• Title/Summary/Keyword: Thermochromic pigment

Search Result 7, Processing Time 0.024 seconds

Color stability of thermochromic pigment in maxillofacial silicone

  • Kantola, Rosita;Lassila, Lippo V.J.;Tolvanen, Mimmi;Valittu, Pekka K.
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSE. Maxillofacial silicone elastomer is usually colored intrinsically with color pigments to match skin colors. The purpose of this study was to investigate the color stability of a maxillofacial silicone elastomer, colored with a thermochromic, color changing pigment. MATERIALS AND METHODS. Disc-shaped maxillofacial silicone specimens were prepared and divided into 3 groups: a conventionally colored control group, one group additionally colored with 0.2 wt% thermochromic pigment, and one group with 0.6 wt% thermochromic pigment. Half of the surface of each specimen was covered with an aluminium foil. All of the specimens were exposed to UV radiation in 6 hour cycles over 46 days. In between the UV exposures, half of the specimens were stored in darkness, at room temperature, and the other half was stored in an incubator, at a humidity of 97% and a temperature of $+37^{\circ}C$. Color measurements were made with a spectrophotometer and registered according to the CIELAB $L^*a^*b^*$ color model system. The changes in $L^*$, $a^*$ and $b^*$ values during artificial aging were statistically analyzed by using paired samples t-test and repeated measures ANOVA. P-values <.05 were considered as statistically significant. RESULTS. The UV exposure resulted in visually noticeable and statistically significant color changes in the $L^*$, $a^*$ and $b^*$ values in both of the test groups containing thermochromic pigment. Storage in the incubator lead to statistically significant color changes in the $a^*$ and $b^*$ values of the specimens containing thermochromic pigment, compared to those stored at room temperature. CONCLUSION. The specimens containing thermochromic pigment were very sensitive to UV radiation, and the thermochromic pigment is not suitable, as such, to be used in maxillofacial prostheses.

Reflective Thermochromic Display on Polyethylene Naphthalate Film

  • Heo, Kyong Chan;Son, Phil Kook;Sohn, Youngku;Yi, Jonghoon;Kwon, Jin Hyuk;Gwag, Jin Seog
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.168-171
    • /
    • 2013
  • A reflective flexible display was fabricated by placing a thermochromic pigment on a polyethylene naphthalate (PEN) substrate coated with an indium tin oxide (ITO) film, and its thermo-optical characteristics were investigated. The reflective thermochromic display showed good image quality with a reflectance of approximately 65%. As a flexible display, the display showed reliability without damage to the image even after the display was bent strongly. The reflective display cell exhibits continuously the gray level according to the temperature controlled by applied voltage. This low cost display is expected be used in outdoor poster applications where information needs to be presented clearly.

A Study on the Visualization of Urban Wind Flow by Using Thermochromic Pigment (열변색성 염료를 이용한 도심 공기 유동 시각화에 관한 연구)

  • Kim, Hong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.291-299
    • /
    • 2021
  • Recently, due to environmental problems caused by densification and high rise of urban areas, interests in air flow is increasing and appropriate shape and layout design of buildings is required. Therefore, in this study, we intend to propose an experimental method that can observe the air flow around a building using thermochromic pigment. Thermochromic pigments have limitations in observing precise temperature changes due to the characteristic that the color changes only with respect to a specific temperature, but they have the advantages of easy configuration of experimental equipment and short time required for experiments. In this study, the air flow tendencies around a building was examined by performing CFD analysis for a simple model and then compared with the thermochromic experiment results in order to review the usefulness of the proposed experimental method. As a result of the experiment, it was possible to observe the formation of separated flow and vortex region generated by buildings using the charateristics of thermochromic pigment and it was confirmed that the proposed method can be useful for buildings design and urban city planning.

The Characteristics of Coating Layer with the Thermochromic and the Photochromic Pigment (시광안료와 시온안료를 사용한 도공층의 특성)

  • Kim, Sun-Kyung;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.5
    • /
    • pp.11-16
    • /
    • 2011
  • This study was aimed to apply thermochromic and photochromic pigments to coating color and to develop a speciality functional coated layer. Two special pigments were added to a conventional coating color. The effects of the special pigments on coating color properties such as water rerention, low-shear viscosity were evaluated. Also the color changes of coated paper was observed under various circumstances. The results showed that the special pigments didn't influence the coating color properties. The coated paper with the special pigments showed four different colors, under various circumstances, implying that thermochromic and photochromic pigments can be used to produce a security paper.

Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System

  • Yoo, Wook-Jae;Jang, Kyoung-Won;Seo, Jeong-Ki;Heo, Ji-Yeon;Moon, Jin-Soo;Park, Jang-Yeon;Lee, Bong-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.235-239
    • /
    • 2010
  • In this study, we have fabricated two types of non-invasive fiber-optic respiration sensors that can measure respiratory signals during magnetic resonance (MR) image acquisition. One is a nasal-cavity attached sensor that can measure the temperature variation of air-flow using a thermochromic pigment. The other is an abdomen attached sensor that can measure the abdominal circumference change using a sensing part composed of polymethyl-methacrylate (PMMA) tubes, a mirror and a spring. We have measured modulated light guided to detectors in the MRI control room via optical fibers due to the respiratory movements of the patient in the MR room, and the respiratory signals of the fiber-optic respiration sensors are compared with those of the BIOPAC$^{(R)}$ system. We have verified that respiratory signals can be obtained without deteriorating the MR image. It is anticipated that the proposed fiber-optic respiration sensors would be highly suitable for respiratory monitoring during surgical procedures performed inside an MRI system.

Skin-Mimicking Phantom for Measurment of Cosmetic Transdermal Absorption and Temperature Changes by Sonophoresis

  • Kim, Gahee;Jang, Hwijin;Choi, Seonmin;Park, Sanghyo;Kim, Woo Cheol;Key, Jaehong
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.271-279
    • /
    • 2022
  • Functional cosmetics containing various ingredients that improve skin health are currently being developed. In addition, technologies that help increase the absorption rate of such cosmetics have recently gained significant attention. Sonophoresis is a method to increase the transdermal absorption of cosmetics using ultrasound. A skin-mimicking phantom was fabricated using polydimethylsiloxane, Strat-MTM membrane, and thermochromic pigments. Gel-type cosmetics used in skin mask packs and epidermal-growth-factor-based nano-cosmetics were tested for their absorption rates at ultrasound frequencies of 1, 3, and 10 MHz in the single frequency mode, and 1/3 and 3/10 MHz in the dual frequency mode. The gel-type cosmetics and epidermal-grow-factor-based nano-cosmetics showed the highest absorption rate at 3/10MHz dual frequency. The size of the cosmetic particles decreased by 5-9 %. Furthermore, the temperature rise caused by ultrasound could be visually recognized by the thermochromic pigment in the phantom turning white. We presented a skin-mimicking phantom. The device can be customized according to the size of the ultrasound probe and has the advantage of quantitatively evaluating the transdermal permeability of cosmetics at a low cost. The development of the skin-mimicking phantom will be useful for determining the suitable conditions required to increase the absorption rate of cosmetics using ultrasound.

The Classification and Investigation of Smart Textile Sensors for Wearable Vital Signs Monitoring (웨어러블 생체신호 모니터링을 위한 스마트텍스타일센서의 분류 및 고찰)

  • Jang, Eunji;Cho, Gilsoo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.6
    • /
    • pp.697-707
    • /
    • 2019
  • This review paper deals with materials, classification, and a current article investigation on smart textile sensors for wearable vital signs monitoring (WVSM). Smart textile sensors can lose electrical conductivity during vital signs monitoring when applying them to clothing. Because they should have to endure severe conditions (bending, folding, and distortion) when wearing. Imparting electrical conductivity for application is a critical consideration when manufacturing smart textile sensors. Smart textile sensors fabricate by utilizing electro-conductive materials such as metals, allotrope of carbon, and intrinsically conductive polymers (ICPs). It classifies as performance level, fabric structure, intrinsic/extrinsic modification, and sensing mechanism. The classification of smart textile sensors by sensing mechanism includes pressure/force sensors, strain sensors, electrodes, optical sensors, biosensors, and temperature/humidity sensors. In the previous study, pressure/force sensors perform well despite the small capacitance changes of 1-2 pF. Strain sensors work reliably at 1 ㏀/cm or lower. Electrodes require an electrical resistance of less than 10 Ω/cm. Optical sensors using plastic optical fibers (POF) coupled with light sources need light in-coupling efficiency values that are over 40%. Biosensors can quantify by wicking rate and/or colorimetry as the reactivity between the bioreceptor and transducer. Temperature/humidity sensors require actuating triggers that show the flap opening of shape memory polymer or with a color-changing time of thermochromic pigment lower than 17 seconds.