• 제목/요약/키워드: Thermo-mechanical properties

검색결과 390건 처리시간 0.028초

ACF를 이용한 CCM (Compact Camera Module)용 COF(Chip-On-Flex) 실장 기술 및 신뢰성 연구 (A Study on the Assembly Process and Reliability of COF (Chip-On-Flex) Using ACFs (Anisotropic Conductive Films) for CCM (Compact Camera Module))

  • 정창규;백경욱
    • 마이크로전자및패키징학회지
    • /
    • 제15권2호
    • /
    • pp.7-15
    • /
    • 2008
  • 본 논문에서는 ACF를 이용한 CCM용 COF 어셈블리의 실장 기술을 연구하고 COF 어셈블리의 신뢰성 분석을 수행하였다. 열팽창계수, 모듈러스, 유리전이온도 등 경화 후 ACF의 열-기계적 물성들을 분석하였으며, ACF의 경화거동 결과를 바탕으로 COF 접합공정 온도 및 시간을 최적화하였으며, 도전입자의 변형 관찰 및 전기적 접촉 저항 측정을 통해 본딩 압력에 대한 최적화를 수행하였다. 또한 ACF 물질 특성이 COF어셈블리의 신뢰성에 미치는 영향을 알아보기 위해 열-싸이클 시험, 고온 유지 시험, 고온고습 시험을 수행하였다. 신뢰성 시험 수행 후 ACF를 이용한 COF 어셈블리의 신뢰성에 가장문제가 되고 있는 점은 열-싸이클 신뢰성 시험에서 나타난 ACF joint의 접촉 저항 증가 문제였고, 이는 ACF 자체의 열-기계적 물성과 밀접한 관계가 있음을 확인하였다.

  • PDF

Enzymatic and Non-enzymatic Degradation of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolyesters Produced by Alcaligenes sp. MT-16

  • Choi Gang Guk;Kim Hyung Woo;Rhee Young Ha
    • Journal of Microbiology
    • /
    • 제42권4호
    • /
    • pp.346-352
    • /
    • 2004
  • Poly(3-Hydroxybutyrate-co­3-Hydroxyvalerate), poly(3HB-co-3HV), copolyesters with a variety of 3HV contents (ranging from 17 to $60\;mol\%$) were produced by Alcaligenes sp. MT-16 grown on a medium containing glucose and levulinic acid in various ratios, and the effects of hydrophilicity and crystallinity on the degradability of the copolyesters were evaluated. Measurements of thermo-mechanical pro­perties and Fourier-transform infrared spectroscopy in the attenuated total reflectance revealed that the hydrophilicity and crystallinity of poly(3HB-co-3HV) copolyesters decreased as 3HV content in the copolyester increased. When the prepared copolyester film samples were non-enzymatically hydrolysed in 0.01 N NaOH solution, the weights of all samples were found to have undergone no changes over a period of 20 weeks. In contrast, the copolyester film samples were degraded by the action of extra­cellular polyhydroxybutyrate depolymerase from Emericellopsis minima W2. The overall rate of weight loss was higher in the films containing higher amounts of 3HV, suggesting that the enzymatic degra­dation of the copolyester is more dependent on the crystallinity of the copolyester than on its hydro­philicity. Our results suggest that the degradability characteristics of poly(3HB-co-3HV) copolyesters, as well as their thermo-mechanical properties, are greatly influenced by the 3HV content in the copoly­esters.

이동 열원을 고려한 전자빔 용접의 유한요소해석 (Fininte element analysis of electron beam welding considering for moving heat source)

  • 조해용;정석영;김명한;조창용;이제훈;서정
    • 한국레이저가공학회지
    • /
    • 제4권1호
    • /
    • pp.21-28
    • /
    • 2001
  • Simulation on the electron beam welding of Al 2219 alloy was carried out by using commercial FEM code MARC, which encounters moving heat sources. Due to axisymmetry of geometry, a half of the cylinder was simulated. A coupled thermo-mechanical analysis was carried out and subroutine for heat flux was substituted in the program. The material properties such as specific heat, heat transfer coefficient and thermal expansion coefficient were given as a function of temperature and the latent heat associated with a given temperature range is considered. As a result, the proper beam power is 60㎸${\times}$60㎃ and welding speed is 1∼1.5 m/min. The residual stress in the heat-affected zone as well as the fusion zone does not increase. It is necessary to use jigs for preventing distortion of cylinder and improving weld quality.

  • PDF

Coupled Analysis of Thermo-Fluid-Flexible Multi-body Dynamics of a Two-Dimensional Engine Nozzle

  • Eun, WonJong;Kim, JaeWon;Kwon, Oh-Joon;Chung, Chanhoon;Shin, Sang-Joon;Bauchau, Olivier A.
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.70-81
    • /
    • 2017
  • Various components of an engine nozzle are modeled as flexible multi-body components that are operated under high temperature and pressure. In this paper, in order to predict complex behavior of an engine nozzle, thermo-fluid-flexible multi-body dynamics coupled analysis framework was developed. Temperature and pressure on the nozzle wall were obtained by the steady-state flow analysis for a two-dimensional nozzle. The pressure and temperature-dependent material properties were delivered to the flexible multi-body dynamics analysis. Then the deflection and strain distribution for a nozzle configuration was obtained. Heat conduction and thermal analyses were done using MSC.NASTRAN. The present framework was validated for a simple nozzle configuration by using a one-way coupled analysis. A two-way coupled analysis was also performed for the simple nozzle with an arbitrary joint clearance, and an asymmetric flow was observed. Finally, the total strain result for a realistic nozzle configuration was obtained using the one-way and two-way coupled analyses.

Study on the Nonlinear Characteristic Effects of Dielectric on Warpage of Flip Chip BGA Substrate

  • Cho, Seunghyun
    • 마이크로전자및패키징학회지
    • /
    • 제20권2호
    • /
    • pp.33-38
    • /
    • 2013
  • In this study, both a finite element analysis and an experimental analysis are executed to investigate the mechanical characteristics of dielectric material effects on warpage. Also, viscoelastic material properties are measured by DMA and are considered in warpage simulation. A finite element analysis is done by using both thermal elastic analysis and a thermo-viscoelastic analysis to predict the nonlinear effects. For experimental study, specimens warpage of non-symmetric structure with body size of $22.5{\times}22.5$ mm, $37.5{\times}37.5$ mm and $42.5{\times}42.5$ mm are measured under the reflow temperature condition. From the analysis results, experimental warpage is not similar to FEA results using thermal elastic analysis but similar to FEA results using thermo-viscoelastic analysis. Also, its effect on substrate warpage is increased as core thickness is decreased and body size is getting larger. These FEA and the experimental results show that the nonlinear characteristics of dielectric material play an important role on substrate warpage. Therefore, it is strongly recommended that non-linear behavior characteristics of a dielectric material should be considered to control warpage of FCBGA substrate under conditions of geometry, structure and manufacturing process and so on.

TMCP 고장력강 용접부의 피로 특성에 관한 연구 (Fatigue properties of welded joints for TMCP steels)

  • 임채범;권영각;엄기원
    • Journal of Welding and Joining
    • /
    • 제8권2호
    • /
    • pp.40-52
    • /
    • 1990
  • Fatigue behavior of the AH, DH and EH grade TMCP(Thermo-Mechanical Control Process) steels was studied. High cycle and low cycle fatigue tests were carried out for the weldment and base metal of each steel. The results showed that the fatigue limit at 2 * $10^6$ cycles was 33 to 37 kg/$mm^2$ for the base metal and 30 to 34 kg/$mm^2$ for the weldment. The ratio of fatigue limit to tensile strength for TMCP steels was 0.65 to 0.71, which was a value close to the upper limit for the ordinary steels. It was also found that the high cycle fatigue behavior of TMCP steels could be affected by the microstructures of base metal. It will be necessary to have fine structure for TMCP steels to increase the fatigue resistance. In low cycle fatigue test, the fatigue lifetime of AH and DH steels accorded well with the ASME best fit curve, while that of EH steel was considerably lower than the fatigue lifetime of the other steels. Fatigue resistance of the weldment made by high heat input(180kJ/cm) welding was not lower than that made by low heat input(80kJ/cm) welding in case of high cycle fatigue, but the high heat input welding decreased the fatigue resistance in case of low cycle fatigue.

  • PDF

평금형을 이용한 축대칭 열간 압출의 유한요소해석 (Finite Element Analysis of Axisymmetric Hot Extrusion Through Square Dies)

  • 강연식;박치용;양동열
    • 대한기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.207-225
    • /
    • 1992
  • The study is concerned with the thermo-viscoplastic finite element analysis of axisymmetric forward hot extrusion through square dies. The problem is treated as a nonsteady state problem because the distribution of temperature and material properties are continuously changing with the punch travel. In square die extrusion, difficulties arise from the severe distortion and die interference of elements at the aperture rim of the die even with a small punch travel. And finite element computation is impossible without intermittent remeshing. Accordingly, an automatic remeshing technique is proposed by employing specially designed mesh structure near the aperture rim. The analysis of temperature distribution includes heat conduction through material interfaces, heat convection and radiation to the atmosphere and is carried out by decoupling the heat analysis from the analysis of the deformation. The extrusion load and the distributions of strain rate and temperature are computed for the given cases rendering reasonable results. Computed grid distortions are found to be in good agreement with the experimental results. It has been thus shown that the proposed method of analysis can be effectively applied to the axisymmetric hot extrusion through square dies.

차체용 강판의 온도에 따른 변형률 속도 민감도 연구 (A study on the strain rate sensitivity according to the temperature for steel sheets of an auto-body)

  • 이희종;송정한;조상순;김석봉;허훈;박성호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.148-151
    • /
    • 2005
  • This paper is concerned with the thermo-mechanical behavior and temperature dependent strain rate sensitivity of steel sheet for an auto-body. In order to Identify the temperature dependent strain rate sensitivity of SPRC35R and SPRC45E, uniaxial tension tests are performed with the variation of the strain rates from 0.001/sec to 200/sec, and the variation of environmental temperatures from $-40^{\circ}C\;to\;200^{\circ}C$. The thermo-mechanical response at the quasi-static state is obtained with the static tensile test and at the intermediate strain rate is from the high speed tensile test. The experimental results show that the strain rate sensitivity increases at low temperature and it decreases at high temperature. It means that as the strain rate getting increasing, the variation of flow stress is more sensitive on the temperature. The results also indicates that the material properties of SPRC35R is more depend on the changes of strain rates and temperature than those of SPRC45E.

  • PDF

초내열합금 터빈 디스크의 열간 단조 공정에 대한 공정 설계 및 미세조직 평가 (Process Design and Microstructure Evaluation During Hot Forging of Superalloy Turbine Disk)

  • 차도진;김동권;김영득;배원병;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2007
  • The forging process design and microstructure evolution for gas turbine disk of a Waspaloy is investigated in this study. Parameters related to deformation are die and preform geometry, and forging temperature of die and workpiece. Die and preform design are considered to reduce the forging load, and to avoid the forging defects. Blocker and finisher dies for multistage forging are designed and the initial billet geometry is determined. The control of hot forging parameters such as strain, strain rate and temperature also is important because the microstructure change in hot working affects the mechanical properties. The dynamic recrystallization evolution has been studied in the temperature range 900-$1200^{\circ}C$ and strain rate range 0.01-1.0s-1 using hot compression tests. Modeling equations are required represent the flow curve, recrystallized grain size, recrystallized volume fraction by various tests. In this study, we used to thermo-viscoplastic finite element modeling equation of DEFORM-2D to predict the microstructure change evolution during thermo-mechanical processing. The microstructure is updated during the entire thermal and deformation processes in forging.

  • PDF

전기자동차 파워모듈용 질화규소 기판의 열기계적 특성 및 열응력 해석에 대한 연구 (A Study of Thermo-Mechanical Behavior and Its Simulation of Silicon Nitride Substrate on EV (Electronic Vehicle)'s Power Module)

  • 서원;정청하;고재웅;김구성
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.149-153
    • /
    • 2019
  • The technology of electronic packaging among semiconductor technologies is evolving as an axis of the market in its own field beyond the simple assembly process of the past. In the field of electronic packaging technology, the packaging of power modules plays an important role for green electric vehicles. In this power module packaging, the thermal reliability is an important factor, and silicon nitride plays an important part of package substrates, Silicon nitride is a compound that is not found in nature and is made by chemical reaction between silicon and nitrogen. In this study, this core material, silicon nitride, was fabricated by reaction bonded silicon nitride. The fabricated silicon nitride was studied for thermo-mechanical properties, and through this, the structure of power module packaging was made using reaction bonded silicon nitride. And the characteristics of stress were evaluated using finite element analysis conditions. Through this, it was confirmed that reaction bonded silicon nitride could replace the silicon nitride as a package substrate.