• Title/Summary/Keyword: Thermo-mechanical coupling behavior

Search Result 21, Processing Time 0.022 seconds

Transient thermo-piezo-elastic responses of a functionally graded piezoelectric plate under thermal shock

  • Xiong, Qi-lin;Tian, Xin
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.187-196
    • /
    • 2017
  • In this work, transient thermo-piezo-elastic responses of an infinite functionally graded piezoelectric (FGPE) plate whose upper surface suffers time-dependent thermal shock are investigated in the context of different thermo-piezo-elastic theories. The thermal and mechanical properties of functionally graded piezoelectric plate under consideration are expressed as power functions of plate thickness variable. The solution of problem is obtained by solving the corresponding finite element governing equations in time domain directly. Transient thermo-piezo-elastic responses of the FGPE plate, including temperature, stress, displacement, electric intensity and electric potential are presented graphically and analyzed carefully to show multi-field coupling behaviors between them. In addition, the effects of functionally graded parameters on transient thermo-piezo-elastic responses are also investigated to provide a theoretical basis for the application of the FGPE materials.

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

A new element elimination model to predict fire-induced damage on an underground structure (요소제거기법을 적용한 지하구조물의 화재손상 예측모델 개발)

  • Chang, Soo-Ho;Choi, Soon-Wook;Bae, Gyu-Jin;Ahn, Sung-Youll
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.313-327
    • /
    • 2008
  • Thermo-mechanical coupled behavior of an underground structure during a fire accident have not been fully understood yet. Moreover, when such a thermo-mechanical coupled behavior is not considered in numerical analyses based on conventional heat transfer theory, fire-induced damage zone in an underground structure can be considerably underestimated. This study aims to develop a FEM-based numerical technique to simulate the thermo-mechanical coupled behavior of an underground structure in a fire accident. Especially, an element elimination model is newly proposed to simulate fire-induced structural loss together with a convective boundary condition. In the proposed model, an element where the maximum temperature calculated from heat transfer analysis is over a prescribed critical temperature is eliminated. Then, the proposed numerical technique is verified by comparing numerical results with experimental results from real fire model tests. From a series of parametric studies, the key parameters such as critical temperature, element size and temperature-dependent convection coefficients are optimized for the RABT and the RWS fire scenarios.

  • PDF

A Study of Combustion Instability Mode in Dual Swirl Gas Turbine Combustor by PLIF and Chemiluminescence Measurement (PLIF 및 자발광 계측을 이용한 이중선회 가스터빈 연소기에서 연소불안정 모드 연구)

  • Choi, Inchan;Lee, Keeman;Juddoo, Mrinal;Masri, A.R.
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.29-38
    • /
    • 2014
  • This paper described an experimental investigations of combustion instability mode in a lean premixed dual swirl combustor for micro-gasturbine system. When such the instability occurs, a strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave which results in a loud, annoyed sound and may also lead a structural damage to the combustion chamber. The detailed period of flame behavior and heat release in combustion instability mode have been examined with high speed OH and CH-PLIF system and $CH^*$ chemiluminescence measurement, flame tomography with operated at 10 kHz and 6 kHz each. Experiment results suggest that unstable flame behavior has a specific frequency with 200 Hz and this frequency is accords with about 1/2 sub-harmonic of combustor resonance frequency, not fundamental frequency. This is very interesting phenomenon that have not reported yet from other previous works. Therefore, when a thermo-acoustic instability with Rayleigh criterion occurs, the fact that the period of heat release and flame behavior are different each other was proposed for the first time through this work.

A numerical study on the coupled thermo-hydro-mechanical behavior of discontinuous rock mass (불연속암반에서의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 김명환;이희석;이희근
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • A finite element code was developed to analyze coupled thermo-hydro-mechanical phenomena. This code is based on the finite element formulation provided by Noorishad et al. (1984) and Joint behavior was simulated Goodman's joint constitutive model. The developed code was applied for T-H-M coupling analysis for two kinds of shaft models, with a joint or without a joint respectively. For a model without a joint, temperature increased from the shaft wall to outward evidently. The radial displacement showed opposite directions of outward and inward at some distance from shaft wall. For a model with a joint, closure of joint was found due to thermal expansion. The temperature distribution along a joint showed relatively lower than that of rock matrix because of low thermal conductivity and high specific heat of water. And it could be concluded that effects of thermal flow to joint were more than that of hydraulic flow in a rock mass.

  • PDF

Numerical Analysis of Laboratory Heating Experiment on Granite Specimen (화강암의 실내 가열실험에 대한 수치해석적 검토)

  • Dong-Joon, Youn;Changlun, Sun;Li, Zhuang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.558-567
    • /
    • 2022
  • The evolution of temperature and thermal stress in a granite specimen is studied via heating experiment in the context of a high-level radioactive waste repository. A heating condition based on the decay-induced heat is applied to a cubic granite specimen to measure the temperature and stress distributions and their evolution over time. The temperature increases quickly due to heat conduction along the heated surfaces, but a significant amount of thermal energy is also lost through other surfaces due to air convection and conduction into the loading machine. A three-dimensional finite element-based model is used to numerically reproduce the experiment, and the thermo-mechanical coupling behavior and modeling conditions are validated with the comparison to the experimental results. The most crucial factors influencing the heating experiment are analyzed and summarized in this paper for future works.

Numerical Studies on Thermo-Hydro-Mechanical Couplings for Underground Heat Storage. (암반내 축열시스템의 열-수리-역학적 상호작용에 대한 수치해석적 연구)

  • 이희석;김명환;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.1
    • /
    • pp.17-25
    • /
    • 1998
  • This paper investigates coupled thermal, mechanical and hydraulic phenomena in deep rock mass especially for underground heat storage system. Firstly, concepts of underground heat storage were presented and coupling phenomena in this area were illustrated. In order to understand the basic mechanism of thermal, hydraulic and deformation behavior in rock cavern disturbed by thermal gradient about 10$0^{\circ}C$, various numerical experiments were conducted using several codes. The study involves the behavior of fractured rock mass including rock joint. In spite of the limitation of codes modelling fully coupled effects, these codes could be applied in analysis of underground heat storage. The heat loss in rock mass, which is a major factor in heat storage, is insignificant in all results.

  • PDF

Formulation of fully coupled THM behavior in unsaturated soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.808-812
    • /
    • 2010
  • A great deal of attention is focused on coupled Thermo-Hydro-Mechanical (THM) behavior of multiphase porous media in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from 3 mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. Finite element code is developed from the Galerkin formulation and time integration of these governing equations for 4 main variables (displacement $\underline{u}$, gas pressure $P_g$, liquid pressure $P_l$), and temperature T). The code is validated with theoretical solutions for linear material with simple boundary conditions.

  • PDF