• Title/Summary/Keyword: Thermo-forming

Search Result 54, Processing Time 0.023 seconds

Deformation Behavior of Bulk Amorphous Alloys During Hot Forming Process (열간성형공정에서 벌크 아몰퍼스 소재의 변형거동)

  • Lee Yong-Shin
    • Transactions of Materials Processing
    • /
    • v.13 no.8
    • /
    • pp.696-703
    • /
    • 2004
  • The purpose of this study is to examine the bulk/sheet forming characteristics of bulk amorphous alloys in the super cooled liquid state. Recently it is reported that amorphous alloys exhibit stress overshoot/undershoot and non-Newtonian behaviors even in the super cooled liquid state. The stress-strain curves with the temperature-dependences as well as strain-rate dependence of Newtonian/non-Newtonian viscosities of amorphous alloys are obtained based on the previous experimental works. Then, those curves are directly used in the thermo-mechanical finite element analyses. Upsetting and deep drawing of amorphous alloys are simulated to examine the effects of process parameters such as friction coefficient, forming speed and temperature. It could be concluded that the superior formability of an amorphous alloy can be obtained by taking the proper forming conditions.

A Study on the Thermo-elasto-plastic Analysis of Upset Forming (전기 업셋팅 가공시의 열탄소성 해석에 관한 연구)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.69-76
    • /
    • 1994
  • Thermal elasto-plastic analysis of axi-symmetric body by the finite element method is presented in this paper for analyzing the process of upset forming of circular section extruded bar. The example of calculation for upset forming of Nimonic extruded bar is also presented. It is shown that remeshing of quadrilateral finite element is necessary because the very highly distorted element by plastic deformation disturbs the calculation. Calculated values for nodal points in new mesh are obtained from nodal points of old mesh by linear interpolation method. The experimental results are compared with calculated values. The appearance of upsetupset forming obtained by experimental method is very similar to that obtained by calculations. So, it is proved that the thermal elasto-plastic analysis of axi-symmetric body by the finite element method is very useful for finding the optimum upsetting condition.

  • PDF

Optimal Process Design in Non-Steady Metal Forming by the Design Sensitivity (설계민감도를 이용한 비정상상태 소성가공공정 최적 설계)

  • 정석환;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.113-118
    • /
    • 1997
  • A new approach to process optimal design in non-isothermal, non-steady state metal forming is presented. In this approach, the optimal design problem is formulated on the basis of the integrated thermo-mechanical finite element process model so as to cover a wide range of the objective functions and design variables, and the derivative based approach is adopted for conducting optimization by design iteration. The process model, the formulation for process optimal design, and the procedures for the evaluation of the design sensitivity and for design iteration for optimization are described.

  • PDF

An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel (6061 알루미늄합금 휠 단조공정의 해석)

  • 김영훈;유태곤;황병복
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF

An efficient finite element analysis model for thermal plate forming in shipbuilding

  • S.L. Arun Kumar;R. Sharma;S.K. Bhattacharyya
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Herein, we present the design and development of an efficient finite element analysis model for thermal plate forming in shipbuilding. Double curvature shells in the ship building industries are primarily formed through the thermal forming technique. Thermal forming involves heating of steel plates using heat sources like oxy-acetylene gas torch, laser, and induction heating, etc. The differential expansion and contraction across the plate thickness cause plastic deformation and bending of plates. Thermal forming is a complex forming technique as the plastic deformation and bending depends on many factors such as peak temperature, heating and cooling rate, depth of heated zone and many other secondary factors. In this work, we develop an efficient finite element analysis model for the thermo-mechanical analysis of thermal forming. Different simulations are reported to study the effect of various parameters affecting the process. Temperature dependent properties are used in the analysis and the finite element analysis model is used to identify the critical flame velocity to avoid recrystallization of plate material. A spring connected plate is modeled for structural analysis using spring elements and that helps in identifying the resultant shapes of various thermal forming patterns. Finally, detailed simulation results are reported to establish the efficacy, applicability and efficiency of the designed and developed finite element analysis model.

Process Sequence Design of Longneck Flange by Cold Extrusion Process (냉간압출을 이용한 롱넥 플랜지 성형에 대한 공정설계)

  • 임중연;황병복;김철식
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • This paper is concerned with the process sequence design of longneck flange forming by using cold extrusion with thick hollow pipe. The conventional hot forming process to produce a longneck flange is investigated by thermo-viscoplastic finite element method to observe the metal flow in detail and evaluate design requirements. Based on the results of simulation of the current hot forming process, design strategy for improving the process sequence are developed using the thick hollow pipe. The main goal is to obtain an appropriate improved process sequence which can produce the required product most economically without tensile cracking, workpiece buckling, and overloading of tools. Newly process condition such as semi-die angle, reductio ratio of cross-sectional area of axisymmetrical extrusion process. The final designed process can provide very useful guidelines to other flange forming industries.

  • PDF

Bending Characteristics of DP980 Steel Sheets by the Laser Irradiation (DP980강판의 레이저 조사에 따른 굽힘 변형특성 연구)

  • Song, J.H.;Zhang, Y.;Lee, J.S.;Park, S.J.;Choi, D.S.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.378-383
    • /
    • 2012
  • Laser forming is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. This is a new manufacturing technique that forms the metal sheet only by a thermal stress. Analyses of the temperature and stress fields are very important to identify the deformation mechanism in laser forming. In this paper, temperature distributions and deformation behaviors of DP980 steel sheets are investigated numerically and experimentally. FE simulations are first conducted to evaluate the response of a square sheet in bending. The effects of process parameters such as laser power and scanning speed are then analyzed numerically and experimentally. It is observed that experimental and numerical results are in good agreement. These results provide a relationship between the line energy and the angles for laser bending of DP980 steel sheets.

Thermal Deformation of Curved Plates by Line Heating (선상가열법에 의한 곡판의 열변형)

  • LEE JOO-SUNG;LIM DONG-YONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.33-38
    • /
    • 2005
  • It has been well documented that plate forming is one of the most important processes in shipbuilding. In the most shipyards, the line heating method is primarily used for plate forming. Since the heating process is carried out for the curved plate and not for the flat plate, a curvature effect on the final deformation must be considered in deriving the simplified prediction models for deformation. This paper investigates the effect of curvature along the heating line on the deformation of the plate. First of all, results of numerical analysis are compared with these of a line-heating test, to justify the elasto-plastic analysis procedure for the present study, which shows good agreement. Then, the present numerical procedure is applied to flat and curved plate models, to investigate the curvature effect on the heat transfer characteristics and deformation by line heating.

Development of Simplified Formulas to Predict Deformations in Plate Bending Process with Oxy-Propane Gas Flame (산소-프로판 가스 곡가공 공정에서 강판의 변형예측을 위한 계산식 개발)

  • Bae, Kang-Yul;Yang, Young-Soo;Hyun, Chung-Min;Cho, Si-Hun
    • Journal of Welding and Joining
    • /
    • v.25 no.2
    • /
    • pp.70-75
    • /
    • 2007
  • Simplified mathematical formulas are presented to predict deformations during the plate forming process when the heating parameters are given. To obtain the formulas, firstly, the thermal analysis for steel plate is performed, and the thermo-mechanical analysis is followed with actual heating conditions. The analyses have been carried out by the commercial software MARC, which is programmed based on the FEM. Secondary, the results of the mechanical analysis are synthesized with their variables for a statistical approach, which results in simplified formulas. The results of the analysis are well compared with those of experimental measurements.

Development of a Program to Predict Recrystallizaion Behavior in the Hot Forming Process and Its Application (고온 성형에 있어서 재결정 거동 예측 프로그램 개발 및 적용)

  • Lee K. O.;Kang J. H.;Kang S. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.136-142
    • /
    • 2001
  • Recently, a much amount of attention has been paid not only to produce products with precise dimensional accuracy, but also to predict and control the microstructural evolution and mechanical properties of parts. Especially, to do the latter through computer simulation, the history of states factors influencing on these evolution such as temperature, strain, strain rate etc., should be calculated and a appropriate mathematical models for the prediction of microstructural evolution must be developed. Thus, in this study thermo-viscoplastic finite element program including the model for predicting microstructural has been developed. Also for the verification of developed program warm forging process for the rotor pole was simulated and the comparison between the results calculated and ones in the literature was made.

  • PDF