• 제목/요약/키워드: Thermo-elasto-plastic analysis

검색결과 45건 처리시간 0.021초

유한요소법을 이용한 다공성금속의 고온변형해석 (Analysis of the Hot Deformation of Porous metals by Finite Element Method)

  • 한흥남;이용기;오규환;이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1994년도 추계학술대회 논문집
    • /
    • pp.149-156
    • /
    • 1994
  • The thermomechanical elasto-plastic problems in hot forging of the porous metals are analyzed using the thermo-elasto-plastic finite element method. This finite element program has been formulated using the yield condition advanced by Lee and Kim and developed using the thermo-elasto-plastic time integration procedure. Thermomechanical responses and densification behaviors of the porous metals during hot forging are calcucated at various initial relative densities, strain rates and temperatures. The calculated results are in good agreement with experimental data.

  • PDF

열간분말단조 공정의 열탄소성 유한요소해석 (Thermo-Elasto-Plastic Finite Element Analysis of Powder Hot Forging)

  • 김형섭
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.83-89
    • /
    • 1997
  • A finite element analysis to solve the coupled thermomechanical problem in the plane strain upsetting of the porous metals was performed. The analysis was formulated using the yield function advanced by Lee and kim and developed using the thermo-elasto-plastic time integration procedure. The density and temperature dependent thermal and mechanical properties of porous metals were considered. The internal heat generation by the plastic deformation and the changing thermal boundary conditions corresponding to the geometry were incorporated in the program. The distributions of the stress, strain, pressure, density and temperature were predicted during the free resting period, deformation period and dwelling period of the forging process.

  • PDF

단속 필렛 용접의 변형 특성에 관한 연구 (Deformation Characteristics of Intermittent Fillet Welding)

  • 이주성
    • 한국해양공학회지
    • /
    • 제25권6호
    • /
    • pp.105-109
    • /
    • 2011
  • As is well appreciated, welding is the most important fundamental process in manufacturing marine structures. However, weld-induced deformation is inevitable because of the non-uniform distribution of temperature during welding. The deformation caused by welding is one of the principal obstacles in enhancing the productivity in the manufacturing procedure for marine structures. This should be much more seriously considered in the case of the thin blocks found in a ship with multi-deck structures. This paper is concerned with the deformation control of thin panel blocks by applying intermittent welding to fillet welding. In order to investigate the quantitative effect of the intermittent welding, a thermo elasto-plastic analysis was carried out with various welding pitches and plate thicknesses. Welding tests were also carried out to show the validity of the present thermo-elasto-plastic analysis. Numerical analysis results showed good agreement with those of the welding tests. As far as the present numerical results are concerned, it has been seen that a more than 50% reduction in angular distortion can be achieved by applying the intermittent welding because of the low heat input.

전기 업셋팅 가공시의 열탄소성 해석에 관한 연구 (A Study on the Thermo-elasto-plastic Analysis of Upset Forming)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.69-76
    • /
    • 1994
  • Thermal elasto-plastic analysis of axi-symmetric body by the finite element method is presented in this paper for analyzing the process of upset forming of circular section extruded bar. The example of calculation for upset forming of Nimonic extruded bar is also presented. It is shown that remeshing of quadrilateral finite element is necessary because the very highly distorted element by plastic deformation disturbs the calculation. Calculated values for nodal points in new mesh are obtained from nodal points of old mesh by linear interpolation method. The experimental results are compared with calculated values. The appearance of upsetupset forming obtained by experimental method is very similar to that obtained by calculations. So, it is proved that the thermal elasto-plastic analysis of axi-symmetric body by the finite element method is very useful for finding the optimum upsetting condition.

  • PDF

탄소강의 펄라이트 변태에 대한 유한요소 해석 (Finite Element Analysis for Pearlite Transformation of Carbon Steel)

  • 탄소강
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.69-75
    • /
    • 2000
  • The object of the research is to estimate for pearlite structure of quenched carbon steels. The effects of temperature on physical properties metallic structures and the latent heat by phase transformation were considered. In this study a set of constitutive equations relevant to the analysis of thermo-elasto plastic materials with pearlite phase transformation during quenching process way presented on the basis of continuum thermo-dynamics. The iso-thermal transformation curve of the SM50C was formlated by cubic spline curve. The formulated equations of evolution in pearlite transformation was used for structure analysis. The volume fraction of pearlite was obtained from the results of calculated metallic structure by Finite element equation.

  • PDF

노치가공에 의한 다층 FCA 용접부의 잔류응력 재분포 특성 (Analysis of Welding Residual Stress Redistributions on Notched Multi-pass FCA Butt Weldment)

  • 방희선;방한서;오익현;김준형
    • Journal of Welding and Joining
    • /
    • 제28권1호
    • /
    • pp.86-91
    • /
    • 2010
  • In the present study, two-dimensional plane deformation thermo elasto-plastic analysis has been carried out, in order to investigate the thermal and mechanical behaviour (residual stress, plastic strain, magnitude of stress and their distribution and production mechanism) on multi-pass FCA butt weldment of high strength EH36-TMCP ultra thick plate. Moreover, this study can be considered as a basis for analysing the fracture toughness, KIC, and its effect on welding residual stress redistribution with notch on multi-pass FCA butt weldment, in future. The results of welding residual stress obtained from thermo elasto-plastic analysis has been compared and verified with the results measured by XRD.

소형 가스용기 레이저 용접부의 열유동 및 변형해석에 관한 연구 (Analysis of Heat Flow and Deformation in Laser Welding of Small Gas Pressure vessel)

  • 박상국;김재웅;김기철
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.104-111
    • /
    • 2001
  • This study presents an analysis method for heat flow and deformation of sheet metal laser welding. A heat source model for 2-dimensional heat flow analysis of laser welding process was suggested in this paper. To investigate the availability of the heat source model, the analysis results were compared and estimated with the results of previous researches. We could get a good agreement between the results of numerical analysis and experiments in the temperature distribution of weldment. Due to the characteristics of welding process, some kinds of deformations are usually generated in a welded structure. Generally, the degree of deformation is dependent on the welding sequence constraints as well as input power Therefore, in this paper we evaluate the deformation of gas pressure vessel according to the welding sequence and input power. In the analysis of weld deformation, 2-dimensional thermo-elasto-plastic analysis was performed for the gas pressure vessel by using a commercial FE program package.

  • PDF

극후판 다층 FCAW 맞대기 용접부의 잔류응력 특성에 관한 연구 (A Study of the Residual Stress Characteristics of FCAW Multi-Pass Butt Joint for an Ultra-Thick Plate)

  • 방희선;방한서;이윤기;김현수;이광진
    • 한국해양공학회지
    • /
    • 제24권2호
    • /
    • pp.62-66
    • /
    • 2010
  • The goal of this work is to establish the reliability of FCA welded joints for high strength EH36-TMCP ultra thick plate. For this, heat conduction and thermo elasto-plastic analyses have been conducted on a multi-pass, X-groove, butt-joint model to clarify the thermal and mechanical behavior (residual stresses, magnitude of the stresses, and their production and distribution mechanisms) of the weld joint. In addition, the results of the welding residual stress obtained from thermo elasto-plastic analysis was verified and compared with results obtained by XRD analysis.

SiC 휘스커강화 금속복합재료와 지르코니아 접합체의 잔류응력 해석에 관한 연구 (A Study on Residual Stress of SiC Whisker Reiforced AI Alloy/$ZrO_2$ Joints)

  • 주재황;박명균
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.18-26
    • /
    • 1996
  • A two dimensional thermo elasto-plastic finite element stress analysis was performed to study residual stress distributions in AI composites reinforced by SiC whisker and $ZrO_2$ ceramic joints. The influences on the residual stress distributions due to the difference of the reinforcement volume fraction and interlayer material property were investigated. Specifically, stress distributions between AI interlayer material property were investigated. Specifically, stress distributions between AI interlayer and $ZrO_2$ ceramic and between the AI interlayer and AI composite were computationally analzed.

  • PDF