• 제목/요약/키워드: Thermo-Physical Properties

검색결과 96건 처리시간 0.038초

Generic studies on thermo-solutal convection of mercurous chloride system of ${Hg_2}{Cl_2}$ and Ne during physical vapor transport

  • Choi, Jeong-Gil;Lee, Kyong-Hwan;Kim, Geug-Tae
    • 한국결정성장학회지
    • /
    • 제19권1호
    • /
    • pp.39-47
    • /
    • 2009
  • The effects of thermo-solutal convection on mercurous chloride system of ${Hg_2}{Cl_2}$, and Ne during physical vapor transport are numerically investigated for further understanding and insight into essence of transport phenomena, For $10\;K{\le}{\Delta}T{\le}30\;K$, the growth rate slowly increases and, then is decreased gradually until ${\Delta}T$=50 K, The occurrence of this critical point near at ${\Delta}T$=30 K is likely to be due to the effects of thermo-physical properties stronger than the temperature gradient corresponding to driving force for thermal convection. For the range of $10\;Torr{\le}P_B{\le}300\;Torr$, the rate is second order-exponentially decayed with partial pressures of component B, $P_B$. For the range of $5{\le}M_B{\le}200$, the rate is second order-exponentially decayed with a function of molecular weight of component B, $M_B$. Like the case of a partial pressure of component B, the effects of a molecular weight arc: reflected through the binary diffusivity coefficients, which are intimately related with suppressing the convection flow inside the growth enclosure, i,e., transition from convection to diffusion-dominant flow mode as the molecular weight of B increases. The convective mode is near at a ground level, i,e., on earth (1 $g_0$), and the convection is switched to the diffusion mode for $0.1\;g_0{\le}g{\le}10^{-2}g_0$, whereas the diffusion region ranges from $10^{-2}g_0$ up to $10^{-5}g_0$.

고감성 인조피혁개발을 위한 제품중심 공정설계 시스템 (A Product-Focused Process Design System(PFPDS) for High Comforts Artificial Leather Fabrics)

  • 김주용;박백성;이채정
    • 한국염색가공학회지
    • /
    • 제20권6호
    • /
    • pp.69-74
    • /
    • 2008
  • In this paper, a comfort evaluation system based on a product-focused process design (PFPD) has been proposed for high comforts interior seat covers. Correlations between comforts properties and physical/thermal properties of interior seat covers were examined by combining traditional regression analysis and data mining techniques. A skin sensorial comfort of leather samples was evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Soft', 'Sticky' and 'Elastic'. Thermo-physiological comfort properties of leather samples were evaluated by only human tactile sensation. The adjectives of leather car seat covers are 'Coolness to the touch' and 'Thermal and humid'. Skin sensorial comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Soft', 'Smooth', 'Voluminous' and 'Elastic'. Thermo-physiological comforts of cloth samples were evaluated by only human tactile sensation. The adjectives of cloth car seat covers are 'Coolness to the touch' and 'Thermal and humid'.

태양열 에너지에 의한 아스팔트 포장의 열전달 특성 (Thermo-physical Properties of the Asphalt Pavement by Solar Energy)

  • 이관호;김성겸
    • 한국산학기술학회논문지
    • /
    • 제21권1호
    • /
    • pp.717-724
    • /
    • 2020
  • 일반적으로 아스팔트 포장체의 열전달에 영향을 미치는 인자는 크게 날씨와 포장체의 재료로 나뉘며, 그 중 포장체의 재료 요인으로는 열-물리적 인자(Thermophysical properties)과 포장체 표면의 인자(Surface property)으로 나뉜다. 본 연구에서는 포장체 전반적인 파손 모형에 기본이 되는 아스팔트의 열-물리적 인자에 대한 실험을 진행하였으며, 평가한 아스팔트의 열전달 특성 인자로는 열전도도(Thermal Conductivity), 비열용량(Specific Heat Capacity), 열확산특성(Thermal Diffusivity), 열방사률(Thermal Emissivity)를 평가하였다. 샘플로 사용한 표층용 혼합물 입도는 밀입도 포장 WC-2와 배수성 포장 PA-13으로 선회다짐기를 이용하여 제작하였다. WC-2와 PA-13의 실험결과로 열전도도는 1.18W/m·K과 0.9W/m·K로 나타났고, 비열용량은 970.8J/kg·K과 960.1J/kg·K으로 공극률이 더 낮은 혼합물인 WC-2가 혼합된 재료의 량이 많아 비열용량이 더 높은 나타나는 것을 알 수 있었다. 또한 열방사률은 0.9와 0.91, 열확산률은 5.15㎡/s와 4.66㎡/s으로 WC-2가 PA-13 대비 약 10% 더 빠른 열 확산을 보이는 것을 알 수 있다. 이러한 결과는 향후 아스팔트 포장의 열에너지 활용 및 열에너지에 의한 아스팔트 포장의 파손평가 및 모형개발 등에 연구 및 활용에 가장 근간이 되는 자료가 될 것이라 판단되다.

탄소강의 펄라이트 변태에 대한 유한요소 해석 (Finite Element Analysis for Pearlite Transformation of Carbon Steel)

  • 탄소강
    • 한국생산제조학회지
    • /
    • 제9권3호
    • /
    • pp.69-75
    • /
    • 2000
  • The object of the research is to estimate for pearlite structure of quenched carbon steels. The effects of temperature on physical properties metallic structures and the latent heat by phase transformation were considered. In this study a set of constitutive equations relevant to the analysis of thermo-elasto plastic materials with pearlite phase transformation during quenching process way presented on the basis of continuum thermo-dynamics. The iso-thermal transformation curve of the SM50C was formlated by cubic spline curve. The formulated equations of evolution in pearlite transformation was used for structure analysis. The volume fraction of pearlite was obtained from the results of calculated metallic structure by Finite element equation.

  • PDF

On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.659-674
    • /
    • 2020
  • The present paper employs nonlocal strain gradient theory (NSGT) to study buckling behavior of functionally graded magneto-electro-thermo-elastic (FG-METE) nanoshells under various physical fields. NSGT modeling of the nanoshell contains two size parameters, one related to nonlocal stress field and another related to strain gradients. It is considered that mechanical, thermal, electrical and magnetic loads are exerted to the nanoshell. Temperature field has uniform and linear variation in nanoshell thickness. According to a power-law function, piezo-magnetic, thermal and mechanical properties of the nanoshell are considered to be graded in thickness direction. Five coupled governing equations have been obtained by using Hamilton's principle and then solved implementing Galerkin's method. Influences of temperature field, electric voltage, magnetic potential, nonlocality, strain gradient parameter and FG material exponent on buckling loads of the FG-METE nanoshell have been studied in detail.

Thermo-Physical Properties of Some Coumarin Complexes

  • M. G. Abd El Wahed;K. El Manakhly;N. El Khososy;A. El Farargy
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권6호
    • /
    • pp.594-599
    • /
    • 1997
  • A number of complexes of transition metal ions with some coumarin derivatives have been prepared and their structures were elucidated with the help of conductometric, photometric and infrared studies. The stability constants of various complexes were determined, in aqueous medium, at different temperatures potentiometrically. The thermodynamic characteristics, ΔG, ΔH and ΔS, were calculated. The electrical behaviour of prepared compounds was followed.

Hot stage microscopy and its applications in pharmaceutical characterization

  • Arun Kumar;Pritam Singh;Arun Nanda
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.12.1-12.11
    • /
    • 2020
  • Hot stage microscopy (HSM) is a thermal analysis technique that combines the best properties of thermal analysis and microscopy. HSM is rapidly gaining interest in pharmaceuticals as well as in other fields as a regular characterization technique. In pharmaceuticals HSM is used to support differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA) observations and to detect small changes in the sample that may be missed by DSC and TGA during a thermal experiment. Study of various physical and chemical properties such sample morphology, crystalline nature, polymorphism, desolvation, miscibility, melting, solid state transitions and incompatibility between various pharmaceutical compounds can be carried out using HSM. HSM is also widely used to screen cocrystals, excipients and polymers for solid dispersions. With the advancements in research methodologies, it is now possible to use HSM in conjunction with other characterization techniques such as Fourier transform infrared spectroscopy (FTIR), DSC, Raman spectroscopy, scanning electron microscopy (SEM) which may have additional benefits over traditional characterization techniques for rapid and comprehensive solid state characterization.

Fe-Ni-Co 합금의 고온 변형 공정 변수와 미세조직 및 열물리적 특성의 상관 관계 (Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy)

  • 윤동현;정중은;장영원;이정환;이광석
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.207-214
    • /
    • 2012
  • High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.

Challenges in Carbon/Carbon Composites Technologies

  • Dhami, T.L.;Bahl, O.P.
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.148-157
    • /
    • 2005
  • Carbon/Carbon Composites due to their far superior thermo-mechanical properties are used in a number of demanding applications. However, the material still is used only in specific high tech applications with few exceptions in general industrial applications. The material is extremely expensive and the major challenge is to reduce its cost. Various innovative processing routes are outlined to reduce the cost of processing.

  • PDF