• Title/Summary/Keyword: Thermo-Mechanical Model

Search Result 302, Processing Time 0.024 seconds

Numerical Study of Inclusion removal from Molten Steel by Argon Gas Flotation (용강 내 아르곤가스의 개재물 흡착에 대한 수치적 연구)

  • 문창호;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.335-338
    • /
    • 2003
  • A finite element-based, integrated process model has been developed and applied to predict the detailed, three-dimensional aspects of the thermo-mechanical behavior occurring in the slab caster considering inclusion removal from molten steel by argon bubble flotation. Gas bubbles are simulated using the dispersion model calculating the volume fraction, and the bubble capture effect is included by a source term in the transport equation for particles. The process model is applied to the investigation of the effect of various process parameters on the inclusion removal in the molten steel.

  • PDF

Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D (TOUGH2-MP/FLAC3D의 Barcelona Basic Model 해석 모듈 개발)

  • Lee, Changsoo;Lee, Jaewon;Kim, Minseop;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.1
    • /
    • pp.39-62
    • /
    • 2020
  • In this study, Barcelona Basic Model (BBM) was implemented into TOUGH2-MP/FLAC3D for the numerical analysis of coupled thermo-hydro-mechanical (THM) behavior of unsaturated soils and the prediction of long-term behaviors. Similar to the methodology described in a previous study for the implementation of BBM into TOUGH-FLAC, the User Defined Model (UDM) of FLAC based on the Modified Cam Clay Model (MCCM) and the FISH function of FLAC3D were used to extend the existing MCCM module in FLAC3D for the implementation of BBM into TOUGH2-MP/FLAC3D. In the developed BBM module in TOUGH2-MP/FLAC3D, the plastic strains due to change in suction increase (SI) in addition to mean effective stress are calculated. In addition to loading-collapse (LC) yield surface, suction increase (SI) yield surface is changed by hardening rules in the developed BBM module. Several numerical simulations were conducted to verify and validate the implementation of BBM: using an example presented in the FLAC3D manual for the standard MCCM, simulation results using COMSOL, and experimental data presented in SKB Reports. In addition, the developed BBM analysis module was validated by simultaneously performing a series of modeling tests that were performed for the validation of the Quick tools developed for the purpose of effectively deriving BBM parameters, and by comparing the Quick tools and Code_Bright results reported in a previous study.

MULTI-SCALE MODELS AND SIMULATIONS OF NUCLEAR FUELS

  • Stan, Marius
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.39-52
    • /
    • 2009
  • Theory-based models and high performance simulations are briefly reviewed starting with atomistic methods, such as Electronic Structure calculations, Molecular Dynamics, and Monte Carlo, continuing with meso-scale methods, such as Dislocation Dynamics and Phase Field, and ending with continuum methods that include Finite Element and Finite Volume. Special attention is paid to relating thermo-mechanical and chemical properties of the fuel to reactor parameters. By inserting atomistic models of point defects into continuum thermo-chemical calculations, a model of oxygen diffusivity in $UO_{2+x}$ is developed and used to predict point defect concentrations, oxygen diffusivity, and fuel stoichiometry at various temperatures and oxygen pressures. The simulations of coupled heat transfer and species diffusion demonstrate that including the dependence of thermal conductivity and density on composition can lead to changes in the calculated centerline temperature and thermal expansion displacements that exceed 5%. A review of advanced nuclear fuel performance codes reveals that the many codes are too dedicated to specific fuel forms and make excessive use of empirical correlations in describing properties of materials. The paper ends with a review of international collaborations and a list of lessons learned that includes the importance of education in creating a large pool of experts to cover all necessary theoretical, experimental, and computational tasks.

A Study of the Residual Stress Characteristics of FCAW Multi-Pass Butt Joint for an Ultra-Thick Plate (극후판 다층 FCAW 맞대기 용접부의 잔류응력 특성에 관한 연구)

  • Bang, Hee-Seon;Bang, Han-Sur;Lee, Yoon-Ki;Kim, Hyun-Su;Lee, Kwang-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.62-66
    • /
    • 2010
  • The goal of this work is to establish the reliability of FCA welded joints for high strength EH36-TMCP ultra thick plate. For this, heat conduction and thermo elasto-plastic analyses have been conducted on a multi-pass, X-groove, butt-joint model to clarify the thermal and mechanical behavior (residual stresses, magnitude of the stresses, and their production and distribution mechanisms) of the weld joint. In addition, the results of the welding residual stress obtained from thermo elasto-plastic analysis was verified and compared with results obtained by XRD analysis.

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

Effect of Residual Stress on Fatigue Strength in Resistance Spot Weldment (저항 점 용접부의 피로강도에 미치는 잔류응력의 영향)

  • Yang, Yeong-Su;Son, Gwang-Jae;Jo, Seong-Gyu;Hong, Seok-Gil;Kim, Seon-Gyun;Mo, Gyeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1713-1719
    • /
    • 2001
  • Estimation of fatigue strength on the spot welded joint is very Important for strength design of spot welded steed sheet structures. In this paper, the effect of residual stress on the fatigue life of resistance spot weldment was studied. Residual stress fields of weldment were calculated by using thermo elastic plastic finite element analysis and equivalent fatigue stress considering residual stress effect was obtained. And then we predicted fatigue life, which included the effect of the residual stresses and the actual loading stresses. The calculation and experimental results were in good agreement. Therefore, the proposed calculated model can be considered to be sufficiently powerful for the prediction of fatigue life.

Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory

  • Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • v.64 no.6
    • /
    • pp.683-693
    • /
    • 2017
  • According to a generalized nonlocal strain gradient theory (NSGT), dynamic modeling and free vibrational analysis of nanoporous inhomogeneous nanoplates is presented. The present model incorporates two scale coefficients to examine vibration behavior of nanoplates much accurately. Porosity-dependent material properties of the nanoplate are defined via a modified power-law function. The nanoplate is resting on a viscoelastic substrate and is subjected to hygro-thermal environment and in-plane linearly varying mechanical loads. The governing equations and related classical and non-classical boundary conditions are derived based on Hamilton's principle. These equations are solved for hinged nanoplates via Galerkin's method. Obtained results show the importance of hygro-thermal loading, viscoelastic medium, in-plane bending load, gradient index, nonlocal parameter, strain gradient parameter and porosities on vibrational characteristics of size-dependent FG nanoplates.

A Study on the Finite Element Analysis of Chip Formation in Machining (절삭가공시 집형성의 유한요소 해석에 관한 연구)

  • 김남용;박종권;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.973-976
    • /
    • 1997
  • Process behavior in metal cutting results from the chip formation process which is not easily observable and measurable during machining. By means of the finite element method chip formation in orthogonal metal cutting is modeled. The reciprocal interaction between mechanical and thermal loads is taken into consideration by involving the thermo-viscoplastic flow behavior of workpiece material. Local and temporal distributions of stress and temperature in the cutting zone are calculated depending on the cutting parameters. The calculated cutting forces and temperatures are compared with the experimental results obtarned from orthogonal cutting of steel AISl 4140. The model can be applied in process design for selection of appropriate tool-workpiece combination and optimum cutting conditions in term of mechanical and thermal loads.

  • PDF

Thermal stress analysis of the turbocharger housing using finite element method (유한요소법에 의한 터보차져 하우징의 열응력 해석)

  • Choi, B.L.;Bang, I.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2011
  • A turbocharger is subjected to rapid temperature changes during thermal cyclic loads. In order to predict the thermo-mechanical failures, it's very important to estimate temperature distributions under the thermal shock test. This paper suggest the finite element techniques with the temperature histories, a constitutive material model and the mechanical constraints to calculate the thermal stresses and plastic strain distributions for the turbine housing. The first step was to develop a simple coupon approach to represent the failure mechanism of the classical design shapes and secondly applied the actual turbocharger to predict and validate the weak locations under the physical engine test.

Development of numerical-computation program to predict thermal shock induced by fs laser processing of meatals (펨토초 레이저 금속 가공시 발생하는 열충격 수치계산 프로그램 개발)

  • O, Bu-Guk;Kim, Dong-Sik;Kim, Jae-Gu;Lee, Je-Hun
    • Laser Solutions
    • /
    • v.11 no.1
    • /
    • pp.19-24
    • /
    • 2008
  • It has been recognized that laser dicing of wafers results in low mechanical strength compared to the conventional sawing techniques. Thermal shock generated by rapid thermal loading is responsible for this problem. This work presents a two-dimensional ultra-short thermo elastic model for numerical simulation of femtosecond laser ablation of metals in the high-fluence regime where the phase explosion is dominant. Laser-induced thermoelastic stress is analyzed for Ni. The results show that the laser-induced thermal shock is large enough to induce mechanical damages.

  • PDF