• Title/Summary/Keyword: Thermally stimulated current

Search Result 86, Processing Time 0.02 seconds

Polarity of Charged Particles n XLPE Measured by Temperature Gradient Thermally Stimulated Surface Potential (온도 구배열자극측정법의한 XLPE하전입자의 극성판정)

  • Kook, Sang-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.4
    • /
    • pp.144-152
    • /
    • 1985
  • This paper temperature gradient thermally stimulated surface potentian (TG-TSSP) in measurements are applied to the study of the polarity of trapped and ionic carriers in cross-linked polyethylene (XLPE) filsm. In the thermally stimulated current in uniform temperature (TSC) of XLPE five peaks appear as indicated of the A B C D and E. In this paper A (at about -120$^{\circ}C$) D (at about 70$^{\circ}C$) and E (at about 110$^{\circ}C$) peaks are investigated. A peak is due to the biassing voltage and biassing temperature. Appear in to the glass transition temperature territory and caused in to the polarization of dipole. D peak is due to the depolarization of ionic space charge and E peak due to the detrapping of carriers injected from the electrodes. TG-TSSP and TSSP are measured to study the polarity of ionic carrier (D peak). In the unsatureated region of ionic space charge polarization, TG-TSSP is lower than TSSP during the initial stage of heating. Result of the experiment for E peak, TG-TSSP is higher than TSSP during the initial stage of heating and these results do not depend on the polarity of biassing voltage, and E peak is concerned with positive carriers (Holes).

  • PDF

A study on the behavior of charge particles of $(SR.Ca)TiO_3$ ceramic ($(SR.Ca)TiO_3$세라믹의 하전입자 거동에 관한 연구)

  • 김진사;최운식;신철기;김성열;박현빈;김태성;이준응
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 1997
  • In this paper, in order to investigate the behavior of charged particles on (Sr.Ca)TiO$_{3}$ ceramics with paraelectric properties, the characteristics of electrical conduction and thermally stimulated current was measured respectively. As a result, the conduction mechanism is divided into three regions having different mechanism as the current increased. The region I below 200[V/Cm] shows the ohmic conduction. The region B between 200[V/cm] and 2000[V/cm] can be explained by the Poole-Frenkel emission theory, and the region III above 2000[V/cm] is dominated by the tunneling effect. The three peaks of TSC were obtained at the temperature of -20[.deg. C], 20[.deg. C] and 80[.deg. C], respectively. The origins of these peaks are that the .alpha. peak observed at -20[.deg. C] looks like to be ascribed to the ionization excitation from donor level in the grain, and the .alpha.' peak observed at 20 [.deg. C] appears to show up by hopping conduction of the trapped carrier of border between the oxidation layer and the grain, and the .betha. peak observed at 80[.deg. C] seems to be resulted from hopping conduction of existing carrier in the trap site of the border between the oxidation and second phase.

  • PDF

Thermally Stimulated Currents of PE/Ionomer Blends (PE/Ionomer블렌드의 열자격 전류)

  • ;John Tanaka;Dwight H. Damon
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.8
    • /
    • pp.808-815
    • /
    • 1991
  • The behavior of space charge in PE/ionomer blends has been investigated using the thermally stimulated current (TSC) technique. In the blends, at least two TSC peaks over the temperature range from -50 to 100\ulcorner are observed, one at -5 ~ 10\ulcorner (a peak) and the others at above 60\ulcorner (a peak). The a peak is assigned as the orientation of dipoles from the ionomer component. Two a peaks seem to be related to the charge trapping at sites related to the crystalline phases. One a peak is associated with the ionic interfaces and the other with the ethylene chains without the ionic interfaces. The amount of charges stored in PE/Surlyn 1652 blends increases as the poling field increases over the field range of +8 ~ +30 kV/mm, whereas that in PE/Surlyn 1601 blends increases slightly at low poling fields and then decreases at high poling fields above +10 kV/mm. Exact reasons for such a dirrerence are not known at this point.

  • PDF

The Properties of Thermally Stimulated Currents according to Electrical Stress in Epoxy Composites (전기적 스트레스에 따른 에폭시 복합체의 열자격전류 특성)

  • Oh, Hyun-Seok;Kim, Jin-Sa;Park, Geon-Ho;Lee, Joon-Ung
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.401-403
    • /
    • 1995
  • The degradation phenomena according to electrical stress in epoxy composites were studied. The formation of electrets were observed by appling high voltages, 22.9[kW/cm], during 5[hr] to five kinds of specimens for a given mixing rate, and then TSC(thermally stimulated current) values were measured at the temperature range of $-160\sim200[^{\circ}C]$.

  • PDF

A Study of TSDC for Li2B4O7 Single Crystal (Li2B4O7 단결정의 TSDC에 관한 연구)

  • Cha, Jong Won
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.3 no.1
    • /
    • pp.269-277
    • /
    • 1998
  • The TSDC(Thermally Stimulated Depolarization Current) measurement were carried out in the temperature range $30{\sim}500^{\circ}C$. We observed the anomalous two peaks that have a thousand times longer relaxation time than that of the space charge. It seems that the origin of the two peak are due to the electron trapping effect and to the adsorption of the vacancies at silver electrode.

  • PDF

A study on the Thermally stimulated current(TSC) of the Langmuir-Blodgett(LB) films (Langmuir-Blodgett(LB) 박막의 열자격 전류 연구)

  • 이호식;이원재;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.273-276
    • /
    • 1997
  • This paper describes the thermally stimulated current (TSC) measurements of arachidic acid and polyamic acid alkylamine salt(PAAS) LB film, which is a precursor of polyimide(PI). The measurements were performed from room temperature to about 25$0^{\circ}C$ and the temperature was increased at a rate of 0.02 K/s linearly. It shows that peaks of TSC are observed at about 8$0^{\circ}C$ in the arachidic acid and about 8$0^{\circ}C$, 16$0^{\circ}C$ in the PAAS LB films. Results of these measurements indicate that one peak at 8$0^{\circ}C$ is resulted from alkyl group; the other peak at 16$0^{\circ}C$ is due to alkyl and C-O group of PAAS. Additional large peak at about 16$0^{\circ}C$ is due to dipole moments in the PAAS films. The DSC of PAAS, arachidic acid and octadesylamine are measured. Thermal imidization was performed at 30$0^{\circ}C$ for 1 hour by our pre study.

  • PDF

A study on the Thermally stimulated current(TSC) of the Langmuir-Blodgctt(LB) films (Langmuir-Blodgett(LB) 박막의 열자격 전류 연구)

  • ;;;;M. Iwamoto
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.199-202
    • /
    • 1996
  • This paper describes the thermally stimulated current (TSC) measurements of arachidic acid and polyamic acid alkylamine salt(PAAS) LB film, which is a precursor of polyimide(PI). The measurements were performed from room temperature to about 25$0^{\circ}C$ and the temperature was increased at a rate of 0.02 K/s linearly. It shows that peaks of TSC are observed at about 8$0^{\circ}C$ in the arachidic acid and about 8$0^{\circ}C$, 16$0^{\circ}C$ in the PAAS LB films. Results of these measurements indicate that one peak at 8$0^{\circ}C$ is resulted from alkyl group; the other peak at 16$0^{\circ}C$ is due to alkyl and C-O group of PAAS. Additional large peak at about 16$0^{\circ}C$ is due to dipole moments in the PAAS films. The DSC and TGA of PAAS, arachidic acid and octadesylamine are measured. Thermal imidization was performed at 30$0^{\circ}C$ far 1 hour by our pre study

  • PDF