• Title/Summary/Keyword: Thermal-load

Search Result 1,838, Processing Time 0.029 seconds

Analysis on the Characteristics of Ventilation and Cooling for Greenhouses Constructed in Reclaimed Lands (간척지 온실의 환기 및 냉방 특성 분석)

  • Nam, Sang-Woon;Shin, Hyun-Ho
    • Journal of Bio-Environment Control
    • /
    • v.26 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. The climatic conditions around seven major reclaimed land areas with a plan to install advanced horticultural complexes in Korea were analyzed. The characteristics of natural ventilation and temperature rise through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. Results of comparing the ventilation rate of the greenhouse according to the presence or absence of plants showed the greenhouse with plants had the lower ventilation rate, but the smaller rise of indoor temperature due to the evapotranspiration of plants. In the greenhouse with plants, the number of air changes was in the range of 0.3 to 0.9 volumes/min and the average was 0.7 volumes/min. The rise of indoor temperature relative to outdoor temperature was in the range of 1 to $5^{\circ}C$ and the average $2.5^{\circ}C$. The natural ventilation performance of the experimental greenhouse constructed in the reclaimed land almost satisfied the recommended ventilation rate in summer and the rise of indoor temperature relative to outdoor temperature did not deviate considerably from the cultivation environment of plants. Therefore, it was determined that the greenhouse cultivation in Saemangeum reclaimed land is possible with only natural ventilation systems without cooling facilities. As the reclaimed land is located in the seaside, the wind is stronger than the inland area, and the fog is frequent. This strong wind speed increases the ventilation rate of greenhouses, which is considered to be a factor for reducing the cooling load. In addition, since the fog duration is remarkably longer than that of inland area, the seasonal cooling load is expected to decrease, which is considered to be advantageous in terms of the operation cost of cooling facilities.

Applied Technologies and Effects for the Carbon Zero Office Building (업무용 탄소제로건물의 적용기술 및 효과)

  • Lee, Jae-Bum;Hong, Sung-Chul;Beak, Name-Choon;Choi, Jin-Young;Hong, You-Deog;Lee, Suk-Jo;Lee, Dong-won
    • Journal of Climate Change Research
    • /
    • v.2 no.4
    • /
    • pp.283-295
    • /
    • 2011
  • Many actions against climate change have been taken to reduce greenhouse gases (GHGs) emissions at home and abroad. As of 2007, the GHGs emitted from buildings accounted for about 23 % of Korea's total GHGs emission, which is the second largest GHG reduction potential following industry. In this study, we introduced Carbon Zero Building (CZB), which was constructed by the National Institute of Environmental Research to cut down GHGs from buildings in Korea, and evaluated the main applied technologies, the amount of energy load and reduced energy, and economic values for CZB to provide data that could be a basis in the future construction of this kind of carbon-neutral buildings. A total of 66 technologies were applied for this building in order to achieve carbon zero emissions. Applied technologies include 30 energy consumption reduction technologies, 18 energy efficiency technologies, and 5 eco-friendly technologies. Out of total annual energy load ($123.8kWh/m^2$), about 40% of energy load ($49kWh/m^2$) was reduced by using passive technologies such as super insulation and use of high efficiency equipments and the other 60% ($74.8kWh/m^2$) was reduced by using active technologies such as solar voltaic, solar thermal, and geothermal energy. The construction cost of CZB was 1.4 times higher than ordinary buildings. However, if active technologies are excluded, the construction cost is similar to that of ordinary buildings. It was estimated that we could save annually about 102 million won directly from energy saving and about 2.2 million won indirectly from additional saving by the reduction in GHGs and atmospheric pollutants. In terms of carbon, we could reduce 100 ton of $CO_2$ emissions per year. In our Life Cycle Cost (LCC) analysis, the Break Even Point (BEP) for the additional construction cost was estimated to be around 20.6 years.

Evaluation of mechanical characteristics of marine clay by thawing after artificial ground freezing method (인공동결공법 적용 후 융해에 따른 해성 점토지반의 역학적 특성 평가)

  • Choi, Hyun-Jun;Lee, Dongseop;Lee, Hyobum;Son, Young-Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.31-48
    • /
    • 2019
  • The artificial ground freezing (AGF) method is a groundwater cutoff and/or ground reinforcement method suitable for constructing underground structures in soft ground and urban areas. The AGF method conducts a freezing process by employing a refrigerant circulating through a set of embedded freezing pipes to form frozen walls serving as excavation supports and/or cutoff walls. However, thermal expansion of the pore water during freezing may cause excessive deformation of the ground. On the other hand, as the frozen soil is thawed after completion of the construction, mechanical characteristics of the thawed soil are changed due to the plastic deformation of the ground and the rearrangement of soil fabric. This paper performed a field experiment to evaluate the freezing rate of marine clay in the application of the AGF method. The field experiment was carried out by circulating liquid nitrogen, which is a cryogenic refrigerant, through one freezing pipe installed at a depth of 3.2 m in the ground. Also, a piezo-cone penetration test (CPTu) and a lateral load test (LLT) were performed on the marine clay before and after application of the AGF method to evaluate a change in strength and stiffness of it, which was induced by freezing-thawing. The experimental results indicate that about 11.9 tons of liquid nitrogen were consumed for 3.5 days to form a cylindrical frozen body with a volume of about $2.12m^3$. In addition, the strength and stiffness of the ground were reduced by 48.5% and 22.7%, respectively, after a freezing-thawing cycle.

Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure (상온 상압의 이산화탄소 저장용 탱크를 위한 예냉과정의 비선형 모델링 및 비례-적분 제어 적용)

  • Lim, Yu Kyung;Lee, Seok Goo;Dan, Seungkyu;Ko, Min Su;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.574-580
    • /
    • 2014
  • Storage tanks of Carbon dioxide ($CO_2$) carriers utilized for the purpose of carbon capture and storage (CCS) into subsea strata have to undergo a pre-cooling session before beginning to load cryogenic liquid cargos in order to prevent physical and thermal deterioration of tanks which may result from cryogenic $CO_2$ contacting tank walls directly. In this study we propose dynamic model to calculate the tank inflow of $CO_2$ gas injected for precooling process and its dynamic simulation results under proportional-integral control algorithm. We selected two cases in which each of them had one controlled variable (CV) as either the tank pressure or the tank temperature and discussed the results of that decision-making on the pre-cooling process. As a result we demonstrated that the controlling instability arising from nonlinearity and singularity of the mathematical model could be avoided by choosing tank pressure as CV instead of tank temperature.

The Variation of Indoor Air Quality in Nursing Home

  • Ji, Dong-Ha;Choi, Mi-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.1
    • /
    • pp.117-124
    • /
    • 2020
  • In this paper, we proposed a plan to maintain comfortable indoor air quality in nursing homes by suggesting ways to reduce items temporarily exceeding the reference values through real-time concentration variation analysis of indoor air quality. Five items including PM10, CO2, CO, VOC, and Radon are measured at nursing homes in spring (April) and autumn (September) was carried out and all of the measured items were analyzed to satisfy the criteria set by the Indoor Air Quality Control Act. As a result of the analysis of the real-time concentration change, the concentration of CO2 was close to the reference value based on the number of occupants in the sick room. Due to the disinfectant (alcohol) used to disinfect and the auxiliary tools (adhesive) used in the operation of the program such as making and coloring, it was analyzed to temporarily exceed the standard value in the hall. In conclusion, it is possible to provide pleasant indoor air quality and contribute to securing the nursing home's competitiveness if periodic ventilation, natural disinfectant and eco-friendly product are used in consideration of the thermal environment.

Prediction of Matching Performance of Two-Stage Turbo-charging System Design for Marine Diesel Engine (선박용 디젤엔진의 2단과급 시스템설계를 위한 매칭성능 예측)

  • Bae, Jin-woo;Lee, Ji-woong;Jung, Kyun-sik;Choi, Jae-sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.626-632
    • /
    • 2015
  • The International Maritime Organization (IMO) has adopted several regulations for the prevention of air pollution from ships. In addition, there is a requirement for shipping liners to reduce greenhouse gas emissions. Accordingly, we need to take measurements to ensure that the steps taken are both efficient and environmentally friendly. It has been determined that the application of the Miller cycle in diesel engines has the effect of both reducing the amount of NOx and improving thermal efficiency. However, this method requires a considerably larger charge air pressure. Therefore, we consider a two-stage turbo-charging system, which not only results in a high charging pressure, but also improves the part load performance with an exhaust-gas bypass system or the application of the Miller cycle. Because of complications associated with the two-stage turbo-charging system, it is complex and difficult to realize a design that optimizes matching between diesel engine and turbo-chargers. Accordingly, it is necessary to perform a quantitative analysis to determine the effects and optimal conditions of these different systems in the early stage of system design. In this paper, we develop a simulation program to model these systems, and we verify that the results of this program are reliable. Further, we discuss methods that can be employed to improve its efficiency.

COMPARISON OF THE PHYSICAL PROPERTIES OF FOUR KINDS OF ACRYLIC RESIN DENTURE TEETH (4종 아크릴릭 레진 인공치의 물리적 성질에 관한 비교)

  • Hwang, Jong-Woo;Chung, Chae-Heon;Ko, Yeong-Mu
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.210-230
    • /
    • 1995
  • To compare the wear resistance of four kinds of commercial acrylic resin teeth [SR-Orthosit PosterioresR(Ivoclar Co., Liechtenstein), Endura PosteriorR(Shofu Inc. Japan), trubyte IPN teethR(Dentsply International Inc., York,), Trubyte BiotoneR(dentsply Inermational Inc. Brazil) by means of the toothbrush abrasion method, the artificial resin teeth were embedded in epoxy resin with the occlusal surfaces aligned in one plane for a total of 40 blocks. There after, each lock was mounted in the arm of the toothbrush abrasion machine(K 236, Japan). Wear measurements were made on the three preconditioned states. Those were as follows : no treatment specimens, thermocycled specimens, and thermocycled specimens which were immeresed applied load of 400g during the buring the brushing cycle. At the end of the 30,000-stroke cycle, each specimen was removed, and weighed. The microhardness of four kinds of commercial resin teeth were determined by means of microhardness tester. Microhardness tests were performed on te no treatment specimens, thermocycled specimens, and thermocycled specimens with immersion in the denture cleansing solution. Finally, the comparison of thermal properties were perfomed using differential scanning calorimeter(DSC-1500). The following results were obtained : 1. In the case of no treatment teeth, the wear amount of endura Posterior(EN) was the greatest among the others(p<0.01), and the wear amount of three kinds of artificial resin teeth was increased in the order of Trubyte IPN teeth(IN), Trubyte Biotone(BN), SR-Orthosit Posteriores(SN) but there was no statistic significance(p>0.01). 2. The wear amount of Trubyte IPN teeth(IT) and Trubyte Biotone(BT), was increased due to thermocycling effect, but that of Endura Posteriores(ET) was decreased conversely(p<0.01). 3. Except for the SR-Orthosit Posteriores(STC), the wear amount of three kinds of artificial resing teeth(that is, ETC, ITC, BTC) was increased due to denture cleansing solution$(Cledent^R)$, but there was no statistic significance(p>0.01). But the wear amount of the SR-Orthosit Posteriores(STC) was the greatest among the others(p<0.01). 4. The wear amount of toothbrush was the greatest in case of contact with occlusal surface of SROrthosit Posteriores resin teeth(p<0.01). 5. the microhardness values(KHN) of the SR-Orthosit Posteriores was the highest among the experimental artificial resin teeth(p<0.01). 6. There was no relationship between microhardness valuse(KHN) and wear amount of four kinds of experimental artificial resin teeth(p<0.01). 7. The differential canning calorimetric property of four kinds of artificial resin teeth did not show endothermal or exothermal peak in the range of $100^{\circ}C$

  • PDF

EFFECT OF $CEO_2$ ADDITION IN GLASS COMPOSITION ON THE STRENGTH OF ALUMINA-GLASS COMPOSITES (알루미나-유리 복합체용 글래스의 조성에서 $CeO_2$의 함량변화가 강도에 미치는 영향)

  • Lee, Hwa-Jin;Song, Kwang-Yeob;Kang, Jeong-Kil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.595-605
    • /
    • 2000
  • Dental ceramics have good aesthetics, biocompatibility, low thermal conductivity, abrasion resistance, and color stability. However poor resistance to fracture and shrinkage during firing process have been limiting factors in their use, particularly in multiunit ceramic restorations. A new method for making all-ceramic crowns that have high strength and low processing shrinkage has been developed and is referred to as the Vita In-Ceram method. This study was performed to investigate the effect of $CeO_2$ addition in borosilicate glasses on the strength of alumina-glass composites. Porous alumina compacts were prepared by slip casting and sintered at $1,100^{\circ}C$ for 2 hours. Dense composites were made by infiltration of molten glass into partially sintered alumina at $1,140^{\circ}C$ for 4 hours. Specimens were polished sequentially from #800 to #2000 diamond disk. and the final surface finishing on the tensile side was received an additional polishing sequence through $1{\mu}m$ diamond paste. Biaxial flexure test was conducted by using ball-on-three-ball method at a crosshead speed of 0.5mm/min. To examine the microstructural aspect of crack propagation in the alumina-glass composites, Vickers-produced indentation crack was made on the tensile surface at a load of 98.0 N and dwell time of 15 sec, and the radial crack patterns were examined by an optical microscope and a scanning electron microscope. The results obtained were summarized as follows; 1. The porosity rates of partially sintered alumina decreased with the rising of firing temperature. 2. The maximum biaxial flexure strength of 423.5MPa in alumina-glass composites was obtained with an addition of 3 mol% $CeO_2$ in glass composition and strength values showed the aspect of decrease with the increase of $CeO_2$ content. 3 The biaxial flexure strength values of alumina-glass composites were decreased with rising the firing temperature. 4. Observation of the fracture surfaces of alumina-glass composites indicated that the enhancement of strength in alumina-glass composites was due to the frictional or geometrical inter-locking of rough fracture surfaces and ligamentary bridging by intact islands of materials left behind the fracture front.

  • PDF

Study and Survey of Operating Efficiency with Cool Storage System (빙축열냉방시스템의 운전효율에 관한 조사연구)

  • 손학식;심창호;김강현;김재철
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2002
  • The purpose of this study is to maintain high efficiency and reasonable use of cool thermal storage systems operated in the domestic building sector. As the result of efficiency test from the five types of operated cool storage systems on the condition that COP ranges are 2.6 to 3.4 during the day time and 2.1 to 3.0 during the night time and it decreased by more than 30% of rated COP given 3.8 to 3.0. The Analysis of cool storage rate shows that only 3 (21.4%) systems out of 15 buildings hold to over 40% capacity for its total capacity. To prevent the decrease in operating efficiency, it should correct the malfunction of 3-way valve and expansion valve and the mistake of control values for schedule program and increase cooling tower capacity. In order to improve piping line, it needs bypass brine line off refrigerator, separation of chilled water line with Ice Slurry system at day and night time and speed control of chilled and warm water pumps. This study does require the more studies on improving difficulty of increasing cooling load with Ice on Coil system, waterproofing with Ice Ball system, COP drop during the night time with Ice Lens, low operating temperature during the day time with Ice Slurry and increasing of Power loss due to hot gas de-icing with Ice Harvest in the future.

Remote field Eddy Current Technique Development for Gap Measurement of Neighboring Tubes of Nuclear Fuel Channel in Pressurized Heavy Water Reactor (중수로 핵연료채널과 인접관의 간격측정을 위한 원거리장 와전류검사 기술개발)

  • Jung, H.K.;Lee, D.H.;Lee, Y.S.;Huh, H;Cheong, Y.M.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.164-170
    • /
    • 2004
  • Liquid Injection Nozzle(LIN) tube and Calandria tube(CT) in pressurized Heavy Water Reactor (PHWR) are .ross-aligned horizontally. These neighboring tubes can contact each other due to the sag of the calandria tube resulting from the irradiation creep and thermal creep, and fuel load, etc. In order to judge the contact which might be the safety concern, the remote field eddy current (RFEC) technology is applied for the gap measurement in this paper. LIN can be detected by inserting the RFEC probe into pressure tube (PT) at the crossing point directly. To obtain the optimal conditions of the RFEC inspection, the sensitivity, penetration and noise signals are considered simultaneously. The optimal frequency and coil spacing are 1kHz and 200mm respectively. Possible noises during LIN signal acquisition are caused by lift-off, PT thickness variation, and gap variation between PT and CT. The simulated noise signals were investigated by the Volume Integral Method(VIM). Signal analysis on the voltage plane describes the amplitude and shape of LIN and possible defects at several frequencies. All the RFEC measurements in the laboratory were done in variance with the CT/LIN gap and showed the relationship between the LIN gap and the signal parameters by analyzing the voltage plane signals.