• Title/Summary/Keyword: Thermal-induced degradation

Search Result 61, Processing Time 0.026 seconds

Inhibitory Effects of Dunaliella salina Extracts on Thermally-Induced Skin Aging (두날리엘라 살리나 추출물의 피부 열노화 억제 효과)

  • Joo, Ji-Hye;Seok, Ji Hyun;Hong, In-kee;Kim, Nam Kyoung;Choi, Eunmi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Just like UV radiation, heat increases collagen degradation and accumulation of abnormal elastin fiber and this is termed thermal skin aging. Dunaliella salina (DS), a green alga, is known for its beta-carotene accumulation, having various applications in the health and nutritional products. However, the effects of DS on heat-induced skin aging remain unexplored. In this study, we performed anti-thermal aging tests of the ethanol extract of DS (DSE). We measured the cellular levels of type I procollagen and MMP-1 using ELISA in human dermal fibroblast cells after heat shock. DSE reduced the expression of MMP-1 protein and increased the expression of type I procollagen. In addition, DSE upregulated the mRNA expression of HSP47 reduced by heat shock, which is involved in collagen synthesis. Also, DSE reduced the expression of inflammation mediator (TGF-${\beta}$, IL-12, etc). We demonstrate that DSE regulates the heat-induced solar elastosis through the regulation of tropoelastin and fibrillin-1, two major proteins of elastic fibers, and MMP-12 expression. These results suggest that DSE may be effective for preventing thermally induced skin aging.

후면 에미터 구조의 n-type 결정질 실리콘 태양전지 제작 및 최적화 연구

  • Tak, Seong-Ju;Kim, Yeong-Do;Park, Seong-Eun;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.12.1-12.1
    • /
    • 2011
  • 최근 p-type 결정질 실리콘 태양전지의 광열화현상(light induced degradation)에 대한 관심이 높아지면서, 이를 해결하기 위한 많은 연구들이 수행되고 있다. 본 연구에서는 LID 현상을 원천적으로 제거 할수 있는 n-type 기판을 이용하여, 상업적으로 양산화 가능한 공정을 도입하고, 시뮬레이션을 통하여 고효율화 방안을 제시하고자 한다. 이를 위해 일반적인 p-type 결정질 실리콘 태양전지 제작 공정을 사용하여 알루미늄이 도핑된 후면 에미터 구조의 n-type 결정질 실리콘 태양전지를 제작하였으며, PC1D 시뮬레이션을 통해서 n+/n/p+구조의 n-type 결정질 실리콘 태양전지의 에너지 변환 효율 향상을 위한 방안을 제시하였다.

  • PDF

Structural Changes in $^{60}Co\;\gamma-Ray$ Irradiated Poly(vinylidene fluoride) ($^{60}Co\;\gamma$-선 조사에 의한 Poly(Vinylidene fluoride)의 구조적 변화)

  • Lee, Chung;Kim, Ki-Yup;Kim, Pyeong-Jong;Kim, Jin-Ah;Ryu, Boo-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.437-440
    • /
    • 2004
  • The radiation-induced changes taking place in poly(vinylidene fluoride)(PVDF) exposed to $^{60}Co\;\gamma-ray$ irradiation were investigated in correlation with the applied doses. Samples were irradiated in air at room temperature by $^{60}Co\;\gamma-ray$ to doses in the range of 200 to 1000 kGy. Various properties of the irradiated PVDF were studied using nm, differential scanning calorimetry(DSC) and gel fraction. $^{60}Co\;\gamma-ray$ irradiation was found to induce changes in chemical, thermal, structural properties of PVDF and such changes vary depending on the radiation dose.

  • PDF

Vector Control of Induction Motors with Identification of Rotor Time Constant (회전자 시정수 변동을 보상한 유도 전동기 벡터제어)

  • Kim, Nam-Joon;Lee, Dong-Myung;Moon, Hee-Sung;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.353-356
    • /
    • 1995
  • This paper proposes a simple identification method of the rotor time constant to solve the degradation of motor performance due to the difference between the rotor time constant of a controller and actual one in slip frequency type vector control scheme. The proposed method is based on rotor induced voltage equations and it is confirmed that immunity of the stator resistance thermal variation. The simulation results show that the proposed method suitably identifies the rotor time constant in steady state as well as in transient state.

  • PDF

Effects of UV Irradiation and Thermal Treatment of Photo-Degradable Polyimide Layer on LC Alignment (광분해성 고분자를 이용한 액정배향에서의 광조사 및 열처리 효과)

  • Lee, Jang-Ju;Lee, Won-Ho;Shin, Yong-Il;Paek, Sang-Hyon
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.145-148
    • /
    • 2012
  • The effects of the linearly polarized UV (LPUV) irradiation and thermal treatment of a photo-degradable polyimide (CBDA-ODA) alignment layer (AL) on its AL properties, liquid crystal (LC) alignment, and LCD characteristics have been investigated. The best quality of LC photo-alignment have been induced by the LPUV-irradiation with much (about 5~10 times) less dosage than that generating the maximum anisotropy of the AL. A thermal treatment of the LPUV-irradiated AL has effectively removed the undesirable, low-M.W. fragments of the AL generated during the photo-decomposition and increased the stability of the AL, which has resulted in improvement of the LC alignment and the LCD property.

Pressure/Flow Pulsation Characteristics of the Hydraulic System for Behaviour Prediction of the Prefill Valve (프리필 밸브의 거동 예측용 유압 시스템의 압력/유량 맥동 분석)

  • Park, Jeong Woo;Khan, Haroon Ahmad;Jeong, Eun-A;Kwon, Sung-Ja;Yun, So-Nam;Lee, Hue-Sung
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.1-8
    • /
    • 2021
  • In this work, a circuit with a hydraulic power unit is formulated as a means of predicting the behavior of the prefill valve in the future. The behavior of the prefill valve can be examined by the measurements of the configured power unit, and the performance is determined by using hydraulic pumps, relief valves, and hydraulic hoses that make up the power unit. In particular, pressure/flow pulsation generated by hydraulic pumps can cause instability in the prefill valve and cause noise-induced degradation of the overall performance and reliability of the hydraulic system containing the prefill valve. Therefore, to study the behavior and performance of the prefill valve in a relatively accurate manner, the prediction of the characteristics of the hydraulic power unit driving the prefill valve is very important. In this study, the pulsation characteristics of the hydraulic pump were analyzed to theoretically demonstrate its relationship with different settings of the power unit, such as relief valve pressure settings and the presence/absence of the hose.

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

Critical Buckling Temperatures of Anisotropic Laminated Composite Plates considering a Higher-order Shear Deformation (고차전단변형을 고려한 비등방성 적층복합판의 임계좌굴온도)

  • Han, Seong Cheon;Yoon, Seok Ho;Chang, Suk Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.201-209
    • /
    • 1998
  • The presence of elevated temperature can alter significantly the structural response of fibre-reinforced laminated composites. A thermal environment causes degradation in both strength and constitutive properties, particularly in the case of fibre-reinforced polymeric composites. Furthermore, associated thermal expansion, either alone or in combination with mechanically induced deformation, can result in buckling, large deflections, and excessively high stress levels. Consequently, it is often imperative to consider environmental effects in the analysis and design of laminated systems. Exact analytical solutions of higher-order shear deformation theory is developed to study the thermal buckling of cross-ply and antisymmetric angle-ply rectangular plates. The buckling behavior of moderately thick cross-ply and antisymmetric angle-ply laminates that are simply supported and subject to a uniform temperature rise is analyzed. Numerical results are presented for fiber-reinforced laminates and show the effects of ply orientation, number of layers, plate thickness, and aspects ratio on the critical buckling temperature and compared with those obtained using the classical and first-order shear deformation theory.

  • PDF

Stabilities of Anthocyanin Pigmenta obtained from Crab Apple (Malus prunifolia Wild. Borkh. "Red Fruit") by Ethanol Extraction (꽃사과(Malus prunifolia Wild. Borkh. "Red Fruit")에서 에탄올 추출한 안토시안 색소의 안정성)

  • 김용환
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.1
    • /
    • pp.85-90
    • /
    • 1999
  • The characcteristics of anthocyanin pigments from crab apple (Malus prunifolia Wild. Borkh. "red fruit") by ethanol extract were investigated at various condition of light temperature sugar, organic acid me-tal ion and pH. The pigments were stable(over the 60%) on the light irradiation throughout 20 days sto-rage period at room temperature and in the pesenc of Al-foil red blue green and yellow cover were rage period at room temperature and in the pesence of Al-foil red blue green and yellow cover were very stable. The pigments also showed high thermal stbility(over the 67% at 115$^{\circ}C$ 10min) at pH2.5 respectively. The pigments with added organic acid greatly increased thickness of red color. The pig-ments with added metal ions at pH 2.5 such as Na+ K+, Mg2+ Ca2+ and Mn2+ were stable throughout 20 days storage period at $25^{\circ}C$. But Cu2+ addition showed the rapidly degradation of the pigments and Al3+ addition induced the color conversion from red to redish violet. The thickness of the red color of anthocyanin pigments increased increased as the pH decreased. These results indicated that crab apple antho-cyanin pigments might be potental source of natural food colorant. colorant.

  • PDF

Preparation and Characterization of the Polymeric Antioxidant for Improving the Chemical Durability of Polymer Electrolyte Membranes (고분자 전해질 막의 화학적 내구성 향상을 위한 고분자형 산화방지제 제조 및 특성 분석)

  • LEE, BYEOL-NIM;KODIR, ABDUL;LEE, HYEJIN;SHIN, DONGWON;BAE, BYUNGCHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.308-314
    • /
    • 2021
  • Chemical durability issue in polymer electrolyte membranes has been a challenge for the commercialization of polymer electrolyte membrane fuel cells (PEMFCs). In this study, we proposed a manufacturing method of Nafion composite membrane containing a stable polyimide antioxidant to improve the chemical durability of the membrane. The thermal casting of the Nafion solution with poly (amic acid) induced polyimide reaction. We evaluated proton conductivity, oxidative stability with ex-situ Fenton's test, and fluoride ion emission to analyze the effect of polyimide antioxidants. We confirmed that incorporating the polyimide antioxidant improves the chemical durability of the Nafion membrane while maintaining inherent proton conductivity.