• Title/Summary/Keyword: Thermal-hydraulic simulation

Search Result 168, Processing Time 0.021 seconds

Development of An Nuclear Steam Supply System Thermal-Hydraulic Program for the Westinghouse Type Nuclear Power Plant Simulator Using A Best-Estimate Code (최적 계통분석 코드를 이용한 웨스팅하우스형 원자력발전소 시뮬레이터용 핵 증기 공급 계통 열수력 프로그램 개발)

  • 서재승;전규동;이명수;이용관
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2004.05a
    • /
    • pp.94-100
    • /
    • 2004
  • KEPRI has developed an Nuclear Steam Supply System(NSSS) thermal-hydraulic simulation program (called ARTS-KORIl) based on the best-estimate system code, RETRAN, as a part of the development project for the KORI unit 1 nuclear power plant simulator. To develop the RETRAN code as an NSSS T/H engine for the simulator, a number of code modifications, such as simplifications and removing of discontinuities of the physical correlations, were made to satisfy the simulator requirements of robustness and real time calculation capability Some simplified models and a backup system were also developed to simulate some transients that cannot be efficiently calculated by the RETRAN part of ARTS-KORIl.

  • PDF

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

Development of an Operator Aid System For The Nuclear Plant Severe Accident Training and Management

  • Kim Ko Ryu;Park Sun Hee;Kim Dong Ha
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.32-37
    • /
    • 2004
  • Recently KAERI has developed the severe accident management guidance to establish Korea standard severe accident management system. On the other hand the PC-based severe accident training simulator SATS has been developed, and the MELCOR code is used as the simulation engine. SATS graphically displays and simulates the severe accidents with interactive user commands. The control capability of SATS could make a severe accident training course more interesting and effective. In this paper the development and functions of the electrical hypertext guidance module HyperKAMG and the SATS-HyperKAMG linkage system for the severe accident management are described.

A Study on Thermal-hydraulic Characteristics for Nuclear Fuel Rod Bundle (핵연료 집합체에서의 열유동 특성에 관한 연구)

  • Yoo, S.Y.;Chung, M.H.;Kim, M.W.;Choi, YJ.;Kim, H.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.3-8
    • /
    • 2001
  • For the successful design of nuclear reactor, it is very important to investigate thermal-hydraulic characteristics of fuel rod bundle. Fluid flow and heat transfer in the non-circular cross-section of nuclear fuel rod bundle are different from those found in common circular tube. And complex three dimensional flow including secondary and vortex flow, is formed around the bundles. The purpose of this research is to examine how geometries and flow conditions affect heat transfer in fuel rod bundle. Design data for nuclear fuel rod bundle and structure are surveyed, and $3{\times}3$ sub-channel model is adopted in this study. Computational results are compared with the heat transfer data measured by naphthalene sublimation method, and numerical analysis and evaluation are performed at various design conditions and flow conditions.

  • PDF

Thermal-hydraulic 0D/3D coupling in OpenFOAM: Validation and application in nuclear installations

  • Santiago F. Corzo ;Dario M. Godino ;Alirio J. Sarache Pina;Norberto M. Nigro ;Damian E. Ramajo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1911-1923
    • /
    • 2023
  • The nuclear safety assessment involving large transient simulations is forcing the community to develop methods for coupling thermal-hydraulics and neutronic codes and three-dimensional (3D) Computational Fluid Dynamics (CFD) codes. In this paper a set of dynamic boundary conditions are implemented in OpenFOAM in order to apply zero-dimensional (0D) approaches coupling with 3D thermal-hydraulic simulation in a single framework. This boundary conditions are applied to model pipelines, tanks, pumps, and heat exchangers. On a first stage, four tests are perform in order to assess the implementations. The results are compared with experimental data, full 3D CFD, and system code simulations, finding a general good agreement. The semi-implicit implementation nature of these boundary conditions has shown robustness and accuracy for large time steps. Finally, an application case, consisting of a simplified open pool with a cooling external circuit is solved to remark the capability of the tool to simulate thermal hydraulic systems commonly found in nuclear installations.

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.

Application case for phase III of UAM-LWR benchmark: Uncertainty propagation of thermal-hydraulic macroscopic parameters

  • Mesado, C.;Miro, R.;Verdu, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1626-1637
    • /
    • 2020
  • This work covers an important point of the benchmark released by the expert group on Uncertainty Analysis in Modeling of Light Water Reactors. This ambitious benchmark aims to determine the uncertainty in light water reactors systems and processes in all stages of calculation, with emphasis on multi-physics (coupled) and multi-scale simulations. The Gesellschaft für Anlagen und Reaktorsicherheit methodology is used to propagate the thermal-hydraulic uncertainty of macroscopic parameters through TRACE5.0p3/PARCSv3.0 coupled code. The main innovative points achieved in this work are i) a new thermal-hydraulic model is developed with a highly-accurate 3D core discretization plus an iterative process is presented to adjust the 3D bypass flow, ii) a control rod insertion occurrence -which data is obtained from a real PWR test- is used as a transient simulation, iii) two approaches are used for the propagation process: maximum response where the uncertainty and sensitivity analysis is performed for the maximum absolute response and index dependent where the uncertainty and sensitivity analysis is performed at each time step, and iv) RESTING MATLAB code is developed to automate the model generation process and, then, propagate the thermal-hydraulic uncertainty. The input uncertainty information is found in related literature or, if not found, defined based on expert judgment. This paper, first, presents the Gesellschaft für Anlagen und Reaktorsicherheit methodology to propagate the uncertainty in thermal-hydraulic macroscopic parameters and, then, shows the results when the methodology is applied to a PWR reactor.

Thermal-hydraulic study of air-cooled passive decay heat removal system for APR+ under extended station blackout

  • Kim, Do Yun;NO, Hee Cheon;Yoon, Ho Joon;Lim, Sang Gyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.60-72
    • /
    • 2019
  • The air-cooled passive decay heat removal system (APDHR) was proposed to provide the ultimate heat sink for non-LOCA accidents. The APDHR is a modified one of Passive Auxiliary Feed-water system (PAFS) installed in APR+. The PAFS has a heat exchanger in the Passive Condensate Cooling Tank (PCCT) and can remove decay heat for 8 h. After that, the heat transfer rate through the PAFS drastically decreases because the heat transfer condition changes from water to air. The APDHR with a vertical heat exchanger in PCCT will be able to remove the decay heat by air if it has sufficient natural convection in PCCT. We conducted the thermal-hydraulic simulation by the MARS code to investigate the behavior of the APR + selected as a reference plant for the simulation. The simulation contains two phases based on water depletion: the early phase and the late phase. In the early phase, the volume of water in PCCT was determined to avoid the water depletion in three days after shutdown. In the late phase, when the number of the HXs is greater than 4089 per PCCT, the MARS simulation confirmed the long-term cooling by air is possible under extended Station Blackout (SBO).

A parametric study on the performance of heat pump using standing column well(SCW) (스탠딩컬럼웰(SCW)을 적용한 지열히트펌프의 성능에 대한 매개변수 연구)

  • Chang, Jae-Hoon;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.625-630
    • /
    • 2010
  • Parametric study was performed using the SCW numerical model for evaluating the performance of the SCW. The five ground related parameters, which are porosity, hydraulic conductivity, thermal conductivity, specific heat, geothermal gradient, and five SCW design parameters, which are pumping rate, well depth well diameter, dip tube diameter, bleeding rate, were used in the study. Numerical simulations were performed for short-term (24-hour) simulation. The study results indicate that the parameters that have important influence on the performance of SCW were hydraulic conductivity, thermal conductivity, geothermal gradient, pumping rate, and bleeding rate. Overall, this study showed that various factors had a cumulative influence on the performance of the SCW, and a numerical simulation can be used to accurately predict the performance of the SCW.

  • PDF

Post Test Analysis of the Phebus FPT1 Experiment

  • Cho, Song-Won;Park, Jong-Hwa;Kim, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.88-103
    • /
    • 1999
  • The purposes of this study are to understand the severe accident phenomena, to establish the simulation method for the experimental test, and to assess the current models in MELCOR for future improvement. This paper presents the results of the PHEBUS FPT1 post test analysis using MELCOR computer code, version 1.8.4. The entire PHEBUS facility has been modeled; the core, the primary circuit including the steam generator, and the containment vessel. Both the thermal hydraulic and the fission product behavior have been investigated. The code simulation results of the thermal hydraulic behavior show good agreement with the experimental data, The fission product release and transport are calculated using the CORSOR models in MELCOR code and the results will be compared with the experiment when the experimental data are available.

  • PDF