• Title/Summary/Keyword: Thermal-degradation

Search Result 1,118, Processing Time 0.026 seconds

Thermal Properties of Semiconducting Materials for Power Cable by Carbon Nanotube Content (CNT 함량에 따른 전력케이블용 반도전층 재료의 열적 특성)

  • Yang, Jong-Seok;Lee, Kyoung-Yong;Shin, Dong-Hoon;Park, Bae-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.570-575
    • /
    • 2006
  • In this paper, we have investigated thermal properties by changing the content of carbon nanotube, which is component part of semiconductive shield in underground power transmission cable. Heat capacity (${\Delta}H$), glass transition temperature (Tg) and melting temperature (Tm) were measured with the samples of eight, through DSC (Differential Scanning Calorimetry), and the measurement ranges of temperature selected from $-100[^{\circ}C]\;to\;100[^{\circ}C]$ with heating temperature selected per $4[^{\circ}C/min]$ Also, high temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis) in the temperature from $0[^{\circ}C]\;to\;700[^{\circ}C]$ with rising temperature of $10[^{\circ}C/min]$. As a result, the Glass transition temperatures of the sample were showed near $-20[^{\circ}C]{\sim}25[^{\circ}C]$, and the heat capacity and melting temperature from the DSC was increased according to increasing the content of carbon nanotube, while, thermal diffusivity was increased according to increasing the content of carbon nanotube. Also, heat degradation initiation temperature from the TGA results was increasing according to increasing the content of carbon nanotube with CNT/EEA. Therefore, heat stabilities of EVA, which contained the we VA (vinyl acetate), showed the lowest.

Degradation Mechanism of the ZnO-Varistor Fabricated with the content of a 3-Composition Seed grain (3-성분 종입자법으로 제조된 ZnO-Varistor의 열화기구)

  • 장경욱;박춘배;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.97-100
    • /
    • 1992
  • The Degradation mechanism of the ZnO-varistor fabricated with the content of a 3-Composition seed grain is discussed using the method of Thermally Stimulated Current (TSC). The spectra of TSC is measured in the temperature range of -130~270$^{\circ}C$ with a various forming electric fields E$\sub$f/, temperature T$\sub$f/ time tf, and a various rising rate of temperature. It is observed that there are appeared the peaks of ${\alpha}$, ${\alpha}$$_2$, ${\beta}$ and ${\gamma}$from high temperature in a TSC spectrum. It seems that ${\alpha}$$_1$ peak is due to thermal depolarization of donor ions forming the space charge in the depletion layer, and ${\alpha}$$_2$peak is due to the detrapping of trapped electrons in deep trap level of intergranular layer, and ${\beta}$ peak is due to the thermal exciting of carrier existing in the donor level of grain itself, and ${\gamma}$ peak is due to the thermal exciting of trapped carrier in all shallow trap site randomly distributed in the inner of sample and/or a intrinsic impurity existing in it.

  • PDF

Analysis of Polymer Carbonization using Lasers and its Applications for LCD Manufacturing Process (레이저를 이용한 폴리머 탄화현상 해석 및 LCD 제조공정에서의 응용)

  • Ahn, Dae-Hwan;Bak, Byoung-Gu;Kim, Dong-Eon;Kim, Dong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.6
    • /
    • pp.24-31
    • /
    • 2010
  • Laser carbonization of a polymer layer can be employed in various applications in the microelectronics industry, e.g repairing brightness pixels of an LCD panel. In this work, the process of thermal degradation of LCD color filter polymer by various laser sources with pulsewidths from CW to fs is studied. LCD pixels are irradiated by the lasers and the threshold irradiance of LCD color filter polymer carbonization is experimentally measured. In the numerical analysis, the transient temperature distribution is calculated and the number density of carbonization in the polymer layer is also estimated. It is shown that all the lasers can carbonize the polymer layers if the output power is adjusted to meet the thermal conditions for polymerization and that pulsed lasers can result in more uniform distribution of temperature and carbonization than the CW laser.

Effect of Coffee Grounds on Mechanical Behavior of Poly Propylene Composites

  • Vinitsa Chanthavong;M. N. Prabhakar;Dong-Woo Lee;Jung-Il Song
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.264-269
    • /
    • 2023
  • Spent coffee grounds (SCG) are a ubiquitous byproduct of coffee consumption, representing a significant waste management challenge, as well as an untapped resource for economic development and sustainability. Improper disposal of SCG can result in environmental problems such as methane emissions and leachate production. This study aims to investigate the physicochemical properties of SCG and their potential as a reinforcement material in polypropylene (PP) to fabricate an eco-friendly composite via extrusion and injection molding, with SCG filler ratios ranging from 5-20%. To evaluate the effect of SCG on the morphological and mechanical properties of the bio- composite, thermogravimetric analysis, SEM, tensile, flexural, and impact tests were conducted. The results demonstrated that the addition of SCG lead to a slight increase in brittleness of the composite but did not significantly affect its mechanical properties. Impressively, the presence of a significant organic component in SCG contributed to the enhanced thermal performance of PP/SCG composites. This improvement was evident in terms of increased thermal stability, delayed onset of degradation, and higher maximum degradation temperature as compared to pure PP. These findings suggest that SCG has potential as a filler material for PP composites, with the ability to enhance the material's properties without compromising overall performance.

Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites (비등온 TGA에 의한 개질NR고무복합재료지 열분해 Kinetics에 관한 해석)

  • Oh, Jeong-Seok;Lee, Joon-Mann;Ahn, Won-Sool
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.435-440
    • /
    • 2009
  • Thermal degradation behavior of CR (chloroprene) -modified NR (natural rubber) compounds, having different sulfur/accelerator compositions, was studied by non-isothermal TGA method. Data were analyzed using both Kissinger and Flynn-Wall-Ozawa analysis to assess the activation energies. Activation energy obtained from Kissinger analysis was $147.0{\pm}2.0$ kJ/mol for all samples, showing little effect of sulfur/accelerator composition changes in the samples. On the other hand, activation energy from Flynn-Wall-Ozawa analysis exhibited much variations with conversion, showing average value of $211.6{\pm}19.0$ kJ/mol. From the results, it was considered that whole thermal degradation processes of the samples were composed of complex multiple step processes, of which reaction mechanisms were different from each other.

Kinetic Analyses on Thermal Degradation of Epoxy Based Adhesive for Packaging Application (센서 패키지용 고분자 접착제의 열화 거동 분석)

  • Kim, Yeong K.;Lee, Yoon-Sun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • An analysis of thermal degradation of epoxy based adhesive performed by thermogravimetry tests are presented in this study. Six different heating rates were employed for the weight change measurements. Based on the data, an Arrhenius type modeling equation was developed by calculating activation energies and proportional constants, and $n^{th}$ polynomial function was adopted to predict the weight change rates. The prediction results by the modeling was compared with the data using the average activation energy. It was found that the activation energy at the each heating rate was not same due to the different degradation kinetics, especially at the high heating rate. To overcome this pitfall, a new approach using exponential function series was introduced and employed. The calculation results showed very good agreements with the test data regardless of the heating rates.

A Study on the Kinetics of Thermal Degradation of Polyethylene (폴리에틸렌 열분해의 속도론적 연구)

  • Kim, Myung Soo;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik;Yoo, Kyong Ok
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.548-556
    • /
    • 1999
  • The thermal degradation of polyethylene has been studied using a nonisothermal thermogravimetric technique under a nitrogen atmosphere condition at several heating rates from 10 to $50^{\circ}C/min$. To obtain information on the kinetic parameters, the dynamic thermogravimetric analysis curve and its derivative have been analyzed by a variety of analytical methods such as Kissinger, Freeman-Carroll, Flynn-Wall, Coats-Redfern, Chatterjee-Conrad, Friedman, Horowitz-Metzger, Ozawa and Denq methods. The comparative works for the kinetic results obtained from various methods should be performed to determine the kinetic parameters, because three are tremendous differences in the calculated kinetic parameters depending upon the mathematical method taken in the analysis. From this work, it was found that the apparent activation energy of HDPE was larger than those of LDPE and LLDPE.

  • PDF

Sequence Structure and Thermal Property of Poly(butylene terephthalate) (PBT)/p-Acetoxybenzoic Acid (ABA) Copolymers Obtained Through Melt Trans-esterification Reaction (용융 에스테르 교환반응에 의해 제조된 폴리부틸렌테레프탈레이트/파라아세톡시벤조산 공중합체의 서열구조와 열적 성질)

  • 김도경;박수영;박종래
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.58-64
    • /
    • 2000
  • Poly(butylene terephthalate-co-oxybenzoate) (PBOT ) was synthesized by melt trans-esterification of poly(butylene terephthalate)(PBT) and p-acetoxybensoic acid (ABA) at 250, 260, and 27$0^{\circ}C$ with the compositions of PBT/ABA of 4/6, 5/5, 6/4. The sequence analysis of PBOT with a $^1$H FT-NMR indicated that the number of consecutive oxybenzoate units ranges from 1.2 to 1.5, which is larger than that of the corresponding poly(ethylene terephthalate)(PET)/ABA (PEOT) obtained at the same reaction conditions as the PBOT. The difference in the block length influenced the thermal degradation behavior: Polyoxybezoate (POB), PBT and PEOT showed one-step degradation whereas PBOT exhibited two-step degradation. The results suggested that PBOT consisted of three phases of PBT-rich phase, random phase of PBT and ABA, and ABA-rich phase.

  • PDF

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.

Examination of Berberine Dye using GC-MS after Selective Degradation Treatments (GC-MS를 이용한 Berberine 염료의 퇴화 거동 연구)

  • Ahn, Cheun-Soon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.12
    • /
    • pp.2002-2010
    • /
    • 2009
  • The degradation behavior of berberine is examined using GC-MS to select the fingerprint products that can be used to identify berberine dye in badly faded archaeological textiles. A total of $100^{\circ}C$ thermal and $H_2O_2/UV/O_2$ degradation systems were used to degrade berberine chloride 0.1% solution up to 408 hours. The samples were analyzed using the GC-MS. Dihydroberberine, 2-pteridinamine, 6,7-dimethyl-N-[(trimethylsilyl) oxy]-, and 8-methoxy-11-[3-methylbutyl]-11H-indolo[3,2-c]-quinoline, 5-oxide were detected as the major products of thermal degradation and identified as the fingerprint products for berberine dye at the early stage of degradation. Isobenzofuran-1,3-dione,4,5-dimethoxy-, 9H-fluorene,3,6-bis(2-hydroxyethyl)-,1,3-dioxolo[4,5-g]isoquinolin-5(6H)-one,7,8-dihydro-, and 3-tert-butyl-4-hydroxyanisole were detected as the major products generated by the $H_2O_2/UV/O_2$ degradation and identified as the fingerprint products for berberine dye under severe degradation conditions.