• Title/Summary/Keyword: Thermal-degradation

Search Result 1,118, Processing Time 0.023 seconds

A Study on the Antioxidant of Antiblastic Rubber Mat (항미생물 고무의 항산화성에 관한 연구)

  • Kim Ki-Jun;Lee Hoo-Seol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.4
    • /
    • pp.285-290
    • /
    • 2005
  • Mechanical properties of rubber mat are influenced by many factors such as compounding ingredients and states of cure, process of rubber, and fillers. Our study aim is to investigate influence of N-isopropyl-N'-chloro-P-phenylene diamine antioxidant on the thermal aging and ozone cracking. In this work, the degradation of antiblastic rubber mat was studied and suggested mechanism to involve two-types of degradation, thermal-aging and ozone-cracking both of which can be contained antioxidant or non-antioxidant.

  • PDF

Lewis Acid Degradation Characteristics of Perfluoropolyethers Derivatives (퍼프로로폴리에테르 유도체의 루이스 산 분해특성)

  • Chun, Sang-Wook;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.650-655
    • /
    • 2014
  • The degradation characteristics of perfluoropolyether (PFPE) derivatives currently being used as computer hard disk lubricants have been investigated. Especially, we considered the effects of end group on degradation behavior of PFPE derivatives. It was found that the degradation of PFPE derivatives in the presence of $Al_2O_3$ involves two degradation mechanisms such as thermal degradation and Lewis acid disproportionation by $AlF_3$ which was mainly formed by oxide-to-halide reaction between $Al_2O_3$ and the degraded PFPE. The end groups were strongly related to Lewis acid disproportionation of PFPE derivatives, and it is due to the difference of electron donating ability in the each end groups. Even if PFPE derivatives have same repeating unit in the main chain, Lewis acid disproportionation was prohibited by higher electron donating ability by the end group which caused the high electron density at the acetal group in the repeating unit.

Thermal Stability of $MnOx-WO_3-TiO_2$ Catalysts Prepared by the Sol-gel Method for Low-temperature Selective Catalytic Reduction

  • Sin, Byeong-Gil;Lee, Hui-Su
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.28.2-28.2
    • /
    • 2011
  • The selective catalytic reduction (SCR) of NOx by $NH_3$ is well known as one of the most convenient, efficient, and economical method to prevent NOx emission in flue gas from stationary sources. The degradation of the reactivity is the obstacle for its real application, since high concentrations of sulfur dioxide and thermal factor would deactivate the catalyst. It is necessary to develop high stability of catalysts for low-temperature SCR. Among the transition metal oxides, $WO_3$ is known to exhibit high SCR activity and good thermal stability. The $MnOx-WO_3-TiO_2$ catalysts prepared by sol-gel method with various $WO_3$ contents were investigated for low-temperature SCR. These catalysts were observed in terms of micro-structure and spectroscopy analyses. The $WO_3$ catalyst as a promoter is used to enhance the thermal stability of catalyst since it increases the phase transition temperature of $TiO_2$ support. It was found that the addition of tungsten oxides not only maintained the temperature window of NO conversion but also increased the acid sites of catalyst.

  • PDF

Thermal Stability of Polarized UV Exposed Polyimide Films for Liquid Crystal Display (편광 자외선이 조사된 액정 디스플레이용 폴리이미드 필름의 열 안정성)

  • 김일형;김욱수;하기룡
    • Polymer(Korea)
    • /
    • v.26 no.4
    • /
    • pp.431-438
    • /
    • 2002
  • We studied the orientation behavior and thermal stability of polyimide (PI) molecules under irradiation of polarized UV (PUV) using polarized fourier transform infrared (FTIR) spectroscopy. In the case of PUV-exposed PI films, the remaining PI molecules after photo-degradation showed molecular orientation perpendicular to the irradiated PUV polarization direction predominantly, due to the preferential degradation of PI molecules parallel to the irradiated PUV Polarization direction. On the other hand, the rubbing of PI films induced reorientation of the PI molecules parallel to the rubbing direction. We also investigated the thermal stability of the alignment layers furled by rubbing and PUV irradiation on the PI films using Polarized FTIR. The thermal stability of the PUV irradiated PI alignment layer is lower than that of the rubbed PI layer due to the fragmentation reaction of the PI by PUV.

Modelling of Thermal Conductivity for High Burnup $UO_2$ Fuel Retaining Rim Region

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.201-210
    • /
    • 1997
  • A thermal conductivity correlation has been proposed which can be applied to high turnup fuel by considering both of thermal conductivity with turnup across fuel pellet and additional degradation at pellet rim due to very high porosity. In addition, a correlation has been developed that can estimate the porosity of rim region as a function of rim burnup under the assumptions that all the produced fission gases are retained in the in porosity and threshold pellet average burnup required for the formation of rim region is 40 MWD/㎏U. Rim width is correlated to rim burnup using measured data. For the RISO experimental data obtained at pellet average turnup of 43.5 MWD/㎏U for three linear heat generation rates of 30, 35 and 40 ㎾/m, radial temperature distributions ore calculated using the present correlation and compared with the measured ones. This comparison shows that the present correlation gives the best agreement with the measured data when it is combined with the HALDEN's correlation for thermal conductivity considering its degradation with burnup. Another comparison with the HALDEN's measured fuel centerline temperature as a function of burnup at 25 ㎾/m up to about 44 MWD/㎾U also suggest that the present correlation yields the best agreement when it is combined with the HALDEN's thermal conductivity.

  • PDF

Degradation and Failure Analysis of Lead-free Silver Electrodes with Thermal Cycling (무연계 Ag 외부전극재의 열충격에 따른 열화특성과 고장해석)

  • Kim, Jung-Woo;Yoon, Dong-Chul;Lee, Hee-Soo;Jeon, Min-Seok;Song, Jun-Kwang
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.434-439
    • /
    • 2008
  • Silver pastes as the outer electrodes have been prepared using Pb-free glass frits with different content of $Bi_2O_3$ and the effects of glass composition on the degradation behaviors of the Ag electrodes were investigated using the change of adhesion between Ag electrode and alumina substrate with thermal cycle stress. Low adhesion and high surface resistance were observed in Ag electrode using glass frit with a $Bi_2O_3$ content of 60 wt%, owing to the open microstructure formed at the firing temperature of $600^{\circ}C$. When the $Bi_2O_3$ was increased to 80 wt% in the glass frit, the Ag electrodes had a dense microstructure with high adhesion and a low surface resistance. Delamination of the Ag electrodes was a major failure mode under thermal cycle stress and this was attributed to residual stress due to the thermal expansion mismatch between the Ag electrode and the alumina substrate.

Degradation and Preservation of wood (목재문화재의 열화에 대한 고찰)

  • Kim, Ik-Ju
    • 보존과학연구
    • /
    • s.7
    • /
    • pp.265-277
    • /
    • 1986
  • The degradation of wood is maimly caused by biological and thermal factor. In general, the field of wood preservation can be divided into two broadcategories; namely the deterioration, protection of wood, and the teatment of wood with preservatives. Wood in sea or brackish water incurs marine borer damage, consisting of attack by marine animal and also wood on land suffers severely from insect damage. But the largest wood degradation is caused by microorganism. Animals that attack wood in a marine environment are especially destructive in warm water-regions, little was achieved in their control recently. Therefore this manuscript only introduce the importance of wood deterioration caused by marine animal.

  • PDF

Analysis of Degradation Characteristics for Oil-Paper Insulation using Tan Delta Measurement (Tan Delta 측정을 이용한 유침 절연지의 열화특성 분석)

  • Kim, Jeong-Tae;Kim, Woo-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1518-1523
    • /
    • 2016
  • In this study, in order to understand the degradation characteristics of oil-paper insulation for power transformers and OF cables, tan delta was measured using cable model specimens with long-term accelerated thermal and electrical aging. In addition, to find out the degradation level due to the accelerated aging, tensile strengths of aged papers were measured. As a result, tan ${\delta}$ showed the characteristics of slight decrease at the first stage and then increase with the aging time, which could be analyzed due to the evaporation of remaining moisture and the change of aging rate with time. Also, the trend of tensile strengths with aging temperature and time was appeared to be exponentially decreased and by use of these data equivalent calculated lifetimes and accelerated aging factors were derived for each aging temperatures. After then, tan ${\delta}$ was analyzed with the equivalent operating years. For all different aging temperatures, the aged data were very well fit to the equivalent operating years and it is shown that tan ${\delta}$ was increased with the decrease of tensile strength.

Design of Ultra-sonication Pre-Treatment System for Microalgae CELL Wall Degradation

  • Yang, Seungyoun;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Lee, Sung Hwa
    • International journal of advanced smart convergence
    • /
    • v.5 no.2
    • /
    • pp.18-23
    • /
    • 2016
  • Cell walls of microalgae consist of a polysaccharide and glycoprotein matrix providing the cells with a formidable defense against its environment. Anaerobic digestion (AD) of microalgae is primarily inhibited by the chemical composition of their cell walls containing biopolymers able to resist bacterial degradation. Adoption of pre-treatments such as thermal, thermal hydrolysis, ultrasound and enzymatic hydrolysis have the potential to remove these inhibitory compounds and enhance biogas yields by degrading the cell wall, and releasing the intracellular algogenic organic matter (AOM). This paper preproposal stage investigated the effect of different pre-treatments on microalgae cell wall, and their impact on the quantity of soluble biomass released in the media and thus on the digestion process yields. This Paper present optimum approach to degradation of the cell wall by ultra-sonication with practical design specification parameter for ultrasound based pretreatment system. As a result of this paper presents, a microalgae system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. As a conclusion on this result, Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system.

Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests (가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측)

  • Park, Joon-Hyung;Park, Kwang-Hwa;Park, Hyeong-Geun;Kwon, Young-Il;Kim, Jong-Ho;Sung, Il-Kyung
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF