• 제목/요약/키워드: Thermal-Mixing Analysis

검색결과 226건 처리시간 0.023초

키토산/젤라틴 블랜드 폴리머의 물리적 및 열적 특성에 대한 연구 (Studies on the Physical and Thermal Properties of the Chitosan/Gelatin Blend)

  • 김병호;박장우
    • 한국식품과학회지
    • /
    • 제37권1호
    • /
    • pp.30-37
    • /
    • 2005
  • 유용한 생고분자 필름을 제조하기 위한 목적으로 키토산과 젤라틴을 이용하여 solution casting 방법으로 혼합비율에 따라 혼합필름을 제조하였다. 또한 키토산/젤라틴 혼합필름의 인장 강도, 신장률, 색도, 불투명도, 수분 및 산소 투과도와 같은 물리적인 특성과 열적 특성에 있어 혼합비율이 미치는 효과에 대하여 조사하였다. 혼합비율별로 제조된 키토산/젤라틴 혼합필름의 인장강도는 58.24MPa에서 22.01MPa로 점차적으로 감소 하는 경향을 나타내었고, 신장률은 13.11%에서 24.67%로 인장 강도 결과와는 다르게 증가되는 경향을 보였다. 필름의 외관을 결정하는 중요한 특성인 색도 측정 결과, L 값의 경우 키토산 함량이 증가할수록 감소되었고, a와 b 값은 L 값에 반비례로 증가되었다. 또한 키토산의 함량이 증가함에 따라 제조된 혼합 필름의 ${\Dalta}E$ 및 YI 값들은 키토산 함량 90%를 제외하고는 보다 높은 값들로 측정되었다. 혼합필름의 불투명도는 $0.3104nmO.D./{\mu}m$에서 $1.2161nmO.D./{\mu}m$의 범위로 측정되었다. 수분 투과도는 $1.6875ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$에서 $1.7225ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$로 측정되었지만, Duncan의 다중비교 분석결과로 키토산의 농도가 증가함에 따라 혼합필름의 수분 투과도는 유의적인(p<0.05) 차이를 나타내지 않았다. 산소 투과도는 혼합비율에 따라 $2.2380{\times}10^{-7}mL{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$에서 $2.2975{\times}10^{-7}mL{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$로 나타났다. 또한 열적 특성을 분석한 결과 혼합비율에 따라 유리전이온도는 단일 곡선을 나타내었고, 젤라틴의 함량이 증가함에 따라 유리전이온도는 증가하였기 때문에 이 결과들을 볼 때, 키토산과 젤라틴 고분자들 사이에 상용성이 있음을 알 수 있었다.

경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과 (Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel)

  • 인왕기;신창환;이치영;이찬;전태현;오동석
    • 대한기계학회논문집B
    • /
    • 제40권12호
    • /
    • pp.815-824
    • /
    • 2016
  • 가압경수로에 장전되는 핵연료집합체는 연료 봉 다발과 지지격자 및 상하단 고정체로 구성되어 있다. 고온 고압의 냉각수는 원자로 하부로 유입되어 연료 봉 사이로 형성된 부수로를 따라 노심 상부로 흐른다. 경수로핵연료의 주요 열수력 성능인자는 정상운전시 압력강하 및 임계열속이며 사고시에는 급랭 시간이다. 한국원자력연구원에서는 경수로핵연료의 성능을 향상시키고 국산화를 위해 고성능 경수로핵연료, 이중냉각 핵연료 및 사고저항성 핵연료를 개발하였다. 경수로핵연료의 열수력 핵심기술을 개발하기 위해 압력강하 실험, 난류 유동혼합/열전달 실험, 임계열속 및 급랭 시험을 수행하였으며 전산유체역학 방법도 활용하였다. 더불어 사용후핵연료의 임시저장을 위한 건식저장 용기의 열유동에 대한 전산유체해석을 수행하였다. 한편, 경수로핵연료의 열수력 기반기술을 개발하고 실용화를 위해 대학 및 산업체와 협력연구도 진행하였다.

지지격자를 갖는 $5\times{5}$ PWR 봉다발에서의 난류유동 측정 (Measurements of Turbulent How in $5\times{5}$ PWR Rod Bundles With Spacer Grids)

  • Yang, Sun-Kyu;Chung, Heung-June;Chun, Se-Young;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.263-273
    • /
    • 1992
  • 핵연료 집합체의 속도분포, 압력강하는 열수력 설계와 안전해석에 중요하다. 본 실험적 연구의 목적은 봉다발 지지 격자 하류에서의 수력학적 혼합을 고찰하는데 있다. 이 연구에서 가압경수로형 5X5 봉다발 부수로의 상세한 수력학적 특성들을 1차익 He-Ne LDV를 이용하여 측정하였다. 축방향 유속, 난류강도와 압력강하를 주로 측정하였고 LDV의 정렬을 조정하여 측방향의 유속, 난류강도, Reynolds 전단응력 등도 역시 측정하였다. 봉다발의 마찰계수와 지지 격자의 손실계수는 측정된 압력 강하로부터 평가하였다. 서로 다른 종류의 지지 격자의 수력학적 혼합성능을 이웃하는 부수로 간에서의 난류 횡류 혼합률을 예측함으로써 고찰할 수 있었다.

  • PDF

선박 연돌 형상이 배기가스 흐름에 미치는 영향과 연돌 설계 (CFD interpretation of gas flow around Ship's Funnel and Optimum Design Criterion)

  • 신현준;박상민;김종화
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2011년도 특별논문집
    • /
    • pp.63-69
    • /
    • 2011
  • Exhaust gases of a vessel from a main engine, a diesel generator and an incinerator contain very harmful substances like soot, $SO_2$ and NOx. Careful design of funnel shape is required to prevent those harmful exhaust gases from influencing on accommodation and a fan room. Meanwhile, the exhaust gases are also hot enough to damage electronic devices like radar. Therefore the funnel design should be considered so that electronic devices are not directly exposed to the exhaust gas in the strong stern wind. This study may propose guidelines of optimum design criterion for the anti-thermal damage design of the electronic devices and anti-recirculating design of harmful exhaust gas near the accommodation. From CFD analyses, we can understand that the major factors affecting the exhaust gas dispersion are the large scale mixing by separation vortices and the sluggish flow in the recirculation region. We hope that the funnel flow analysis around ship's funnel is used for practical optimum funnel design to minimize the exhaust gas dispersion by adjusting the funnel shape, the position of the exhaust pipe, the shape of bulwark, the exhaust direction of air ventilated an engine room and the angle of the exhaust pipe.

  • PDF

Processing of Polyurethane/polystyrene Hybrid Foam and Numerical Simulation

  • Lee, Won Ho;Lee, Seok Won;Kang, Tae Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • 제3권4호
    • /
    • pp.159-168
    • /
    • 2002
  • Polyurethane foams were produced by using a homogenizer as a mixing equipment. Effects of stirring speed on the foam structure were investigated with SEM observations. Variation of the bubble size, density of the foam, compressive strength, and thermal conductivity were studied. A hybrid foam consisting of polyurethane foam and commercial polystyrene foam is produced. Mechanical and thermal properties of the hybrid foam were compared with those of pure polyurethane foam. Advancement of flow front during mold filling was observed by using a digital camcorder. Four types of mold geometry were used for mold filling experiments. Flow during mold filling was analyzed by using a two-dimensional control volume finite element method. Variation of foam density with respect to time was experimentally measured. Creeping flow, uniform density, uniform conversion, and uniform temperature were assumed for the numerical simulation. It was assumed for the numerical analysis that the cavity has thin planar geometry and the viscosity is constant. The theoretical predictions were compared with the experimental results and showed good agreement.

다중블록실험과 전산유체해석을 통한 블록형 초고온가스로의 노심우회유량 평가 (ASSESSMENT of CORE BYPASS FLOW IN A PRISMATIC VERY HIGH TEMPERATURE REACTOR BY USING MULTI-BLOCK EXPERIMENT and CFD ANALYSIS)

  • 윤수종;이정훈;김민환;박군철
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.95-103
    • /
    • 2011
  • In the block type VHTR core, there are inevitable gaps among core blocks for the installation and refueling of the fuel blocks. These gaps are called bypass gap and the bypass flow is defined as a coolant flows through the bypass gap. Distribution of core bypass flow varies according to the reactor operation since the graphite core blocks are deformed by the fast neutron irradiation and thermal expansion. Furthermore, the cross-flow through an interfacial gap between the stacked blocks causes flow mixing between the coolant holes and bypass gap, so that complicated flow distribution occurs in the core. Since the bypass flow affects core thermal margin and reactor efficiency, accurate prediction and evaluation of the core bypass flow are very important. In this regard, experimental and computational studies were carried out to evaluate the core bypass flow distribution. A multi-block experimental apparatus was constructed to measure flow and pressure distribution. Multi-block effect such as cross flow phenomenon was investigated in the experiment. The experimental data were used to validate a CFD model foranalysis of bypass flow characteristics in detail.

Synthesis and Properties of Bio-Thermoplastic Polyurethanes with Different Isocyanate Contents

  • Li, Xiang Xu;Sohn, Mi Hyun;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제54권3호
    • /
    • pp.225-231
    • /
    • 2019
  • Bio-based polyester polyol was synthesized via esterification between azelaic acid and isosorbide. After esterification, bio-based polyurethanes were synthesized using polyester polyol, 1,3-propanediol as the chain extender, and 4,4'-diphenylmethane diisocyanate, in mixing ratios of 1:1:1.5, 1:1:1.8, 1:1:2, and 1:1:2.3. The bio TPU (Thermoplastic Polyurethane) samples were characterized by using FT-IR (Fourier Transform Infrared Spectroscopy), TGA (Thermal Gravimetric Analysis), DSC (Differential Scanning Calorimetry), and GPC (Gel Permeation Chromatography). The mechanical properties (tensile stress and hardness) were obtained by using UTM, a Shore A tester, and a Taber abrasion tester. The viscoelastic properties were tested by an Rubber Processing Analyzer in dynamic strain sweep and dynamic frequency test modes. The chemical resistance was tested with methanol by using the swelling test method. Based on these results, the bio TPU synthesized with the ratio of 1:1:2.3, referred to as TPU 4, showed the highest thermal decomposition temperature, the largest molecular weight, and most compact matrix structure due to the highest ratio of the hard segment in the molecular structure. It also presented the highest tensile strength, the largest elongation, and the best viscoelastic properties among the different bio TPUs synthesized herein.

이중혼합 입자 크기 분포 효과에 따른 수분산 폴리우레탄 수지의 특성 변화 연구 (The Effect of Double-mixed Particle Size Distribution on the Properties of Waterborne Polyurethane Resin)

  • 조경일;고재왕;김일진;이진홍;이승걸
    • 한국염색가공학회지
    • /
    • 제34권4호
    • /
    • pp.261-271
    • /
    • 2022
  • Waterborne polyurethane(WPU) is greatly affected by its properties depending on the average particle size. In this study, by analyzing the characteristics of WPUs with different average particle sizes according to the DMPA content and we confirmed that the WPU-Ms have different properties from the physical properties of WPU by mixing two types of WPU with different particle sizes in the same volume. At this time, we mixed WPU at an ideal ratio of 7:3 through literature research. In the thermal characteristic analysis, it was confirmed that the thermal decomposition temperature decreased and Tg increased as the content of DMPA, which is the hard segment, increased. In addition, the average particle size of WPU decreased as DMPA increased, and physical properties and adhesive strength were improved due to increased interaction. When mixed with each other in a weight ratio of 7:3, it was observed that adhesion and mechanical properties were improved compared to only WPU.

A validation study of the SLTHEN code for hexagonal assemblies of wire-wrapped pins using liquid metal heating experiments

  • Sun Rock Choi;Junkyu Han;Huee-Youl Ye;Jonggan Hong;Won Sik Yang
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1125-1134
    • /
    • 2024
  • This paper presents a validation study of the subchannel analysis code SLTHEN used for the core thermal-hydraulic design of the Prototype Gen-IV sodium-cooled fast reactor (PGSFR). To assess the performance of the ENERGY model of SLTHEN, four liquid metal heating experiments conducted by ORNL, WARD, and KIT with hexagonal assemblies of wire-wrapped rod bundles were analyzed. These experiments were performed with 19-and 61-pin bundles and varying power distributions of axial and radial peaking factors up to 1.4 and 3.0, respectively. The coolant subchannel temperatures measured at different axial locations were compared with the SLTHEN predictions with the Novendstern, Chiu-Rohsenow-Todreas (CRT), and Cheng-Todreas (CT) correlations for flow split and mixing in wire-wrapped pin bundles. The results showed that the SLTHEN predicts the measured subchannel temperatures reasonably well with root-mean-square errors of ~10 % and maximum errors of ~20 %. It was also observed that the CRT and CT correlations consistently outperform the Novendstern correlation.

A Study on the Thermal and Chemical Properties of Carbon Nanotube Reinforced Nanocomposite in Power Cables

  • Yang, Sang-Hyun;Jang, Hyeok-Jin;Park, Noh-Joon;Park, Dae-Hee;Yang, Hoon;Bang, Jeong-Hwan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권6호
    • /
    • pp.217-221
    • /
    • 2009
  • The use of the carbon nanotube (CNT) is superior to the general powder state materials in their thermal and chemical properties. Because its ratio of diameter to length (aspect ratio) is very large, it is known to be a type of ideal nano-reinforcement material. Based on this advantage, the existing carbon black of the semiconductive shield materials used in power cables can acquire excellent properties by the use of a small amount of CNTs. Therefore, we fabricated specimens using a solution mixing method. We investigated the thermal properties of the CNT, such as its storage modulus, loss modulus, and its tan delta using a dynamic mechanical analysis 2980. We found that a high thermal resistance level is demonstrated by using a small amount of CNTs. We also investigated the chemical properties of the CNT, such as the oxidation reaction by using Fourier transform infrared spectroscopy (FT-IR) made by Travel IR. In the case of the FT-IR tests, we searched for some degree of oxidation by detecting the carboxyl group (C=O). The results confirm a tendency for a high cross-linking density in a new network in which the CNTs situated between the carbon black constituent molecules show a bond using similar constructive properties.