• Title/Summary/Keyword: Thermal-Chemical-Mechanical Modeling

검색결과 31건 처리시간 0.028초

화학-기계적 연마 공정의 물질제거 메커니즘 해석 Part I: 연성 통합 모델링 (An Analysis on the Material Removal Mechanism of Chemical-Mechanical Polishing Process Part I: Coupled Integrated Material Removal Modeling)

  • 석종원;오승희;석종혁
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.35-40
    • /
    • 2007
  • An integrated material removal model considering thermal, chemical and contact mechanical effects in CMP process is proposed. These effects are highly coupled together in the current modeling effort. The contact mechanics is employed in the model incorporated with the heat transfer and chemical reaction mechanisms. The mechanical abrasion actions happening due to the mechanical contacts between the wafer and abrasive particles in the slurry and between the wafer and pad asperities cause friction and consequently generate heats, which mainly acts as the heat source accelerating chemical reaction(s) between the wafer and slurry chemical(s). The proposed model may be a help in understanding multi-physical interactions in CMP process occurring among the wafer, pad and various consumables such as slurry.

  • PDF

화학기계적 연마 프로세스의 동적 열전달 모델링 연구 (A Dynamic Thermal Modeling of Chemical Mechanical Polishing Process)

  • 석종원
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.617-623
    • /
    • 2004
  • This paper describes a dynamic thermal model for a representative dual axis rotational Chemical-Mechanical Polishing (CMP) tool. The model is one-dimensional but configured in the two-dimensional space and consists of three sub-models (pad, wafer and slurry fluid), with the first and the second that are time-dependent heat conduction-convection models with linear stationary (wafer) and nonlinear moving (pad) boundary conditions, and the last one that is a heat transport-convection model (slurry fluid). The modeling approach is validated by comparing the simulation results with available experimental data.

화학-기계적 연마 공정의 물질제거 메커니즘 해석 Part II: 동적 시뮬레이션 (An Analysis on the Material Removal Mechanism of Chemical-Mechanical Polishing Process Part II: Dynamic Simulation)

  • 석종원;오승희
    • 반도체디스플레이기술학회지
    • /
    • 제6권3호
    • /
    • pp.1-6
    • /
    • 2007
  • The integrated thermal-chemical-mechanical (TCM) material removal model presented in the companion paper is dynamically simulated in this work. The model is applied to a Cu CMP process for the simulation and the results of the three individual ingredients composing the model are presented separately first. These results are then incorporated to calculate the total material removal rate (MRR) of the Cu CMP. It is shown that the non-linear trend of MRR with respect to the applied mechanical power (i.e., non-Prestonian behavior), which is not well explained with the models established in principle on conventional contact mechanics, may be due to the chemical reaction(s) varying non-linearly with the temperature in the wafer.

  • PDF

Finite element analysis of concrete cracking at early age

  • Aurich, Mauren;Filho, Americo Campos;Bittencourt, Tulio Nogueira;Shah, Surendra P.
    • Structural Engineering and Mechanics
    • /
    • 제37권5호
    • /
    • pp.459-473
    • /
    • 2011
  • The study of the early age concrete properties is becoming more important, as the thermal effects and the shrinkage, even in the first hours, could generate cracks, increasing the permeability of the structure and being able to induce problems of durability and functionality in the same ones. The detailed study of the stresses development during the construction process can be decisive to keep low the cracking levels. In this work a computational model, based on the finite element method, was implemented to simulate the early age concrete behavior and, specially, the evaluation of the cracking risk. The finite element analysis encloses the computational modeling of the following phenomena: chemical, thermal, moisture diffusion and mechanical which occur at the first days after the concrete cast. The developed software results were compared with experimental values found in the literature, demonstrating an excellent approach for all the implemented analysis.

유한요소해석에 의한 공구마모의 파괴역학적 모델링 연구 (Fracture-mechanical Modeling of Tool Wear by Finite Element Analysis)

  • 서욱환;이영섭
    • 한국안전학회지
    • /
    • 제19권4호
    • /
    • pp.135-140
    • /
    • 2004
  • 마모구조는 대략적으로 기계, 화학 및 열적 마모 등으로 구분되어 진다. 평면변형 유한요소법이 지속적인 칩 형성을 갖는 대각선 가공을 시뮬레이션 하기 위하여 새로운 재료의 응력 및 온도 필드와 같이 사용되었다. 작업소재의 변형은 등방성 변형 경화를 갖는 탄성-점소으으로 취급되며, 수치해석의 해는 소성 변형과 온도 필드의 결합을 설명하며, 온도 종속적인 재료 물성치로 취급된다. 이 논문에서 개발된 모델에서는 전단영역 주위의 변형률, 응력 및 온도 분포에 대한 구성모델의 불확실성의 영향들을 보여주며 예측된 전단영역의 응력, 변형률 및 온도의 평균값들은 기존의 실험 치와 비교해서 잘 맞는 것으로 사료된다.

Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il
    • Macromolecular Research
    • /
    • 제17권10호
    • /
    • pp.797-806
    • /
    • 2009
  • The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

저온 플라즈마와 첨가제를 이용한 NOx 제거실험 및 수치해석 (The Study of NOx Removal Experiment and Numerical Analysis Modeling using Chemical Addition with Non-thermal Plasma)

  • 채재우;문승일;김관영;김상우;박용광;이창민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.720-725
    • /
    • 2000
  • To remove harmful gases from combustion exhaust gases. fundamental study on NOx removal using pulse corona discharge has been performed through experiments and simulations. The energy consumption should be decreased in order to apply non-thermal plasma technology to industry process. This work summarized the effects of $H_2O$ and Hydrocarbon additive in NOx removal efficiency. The Radical program is used to simulate high voltage discharge and the process of NOx removal. At last, experimental results were compared with simulation results to verify the reliability of this program.

  • PDF

Numerical prediction of stress and displacement of ageing concrete dam due to alkali-aggregate and thermal chemical reaction

  • Azizan, Nik Zainab Nik;Mandal, Angshuman;Majid, Taksiah A.;Maity, Damodar;Nazri, Fadzli Mohamed
    • Structural Engineering and Mechanics
    • /
    • 제64권6권
    • /
    • pp.793-802
    • /
    • 2017
  • The damage of concrete due to the expansion of alkali-aggregate reaction (AAR) and thermal-chemical reactions affecting the strength of concrete is studied. The empirical equations for the variations of expansion of AAR, compressive strength and degradation of the modulus of elasticity with time, and compressive strength with degradation of the modulus of elasticity are proposed by analysing numerous experimental data. It is revealed that the expansion of AAR and compressive strength increase with time. The proposed combination of the time variations of chemical and mechanical parameters provides a satisfactory prediction of the concrete strength. Seismic analysis of the aged Koyna dam is conceded for two different long-term experimental data of concrete incorporating the proposed AAR based properties. The responses of aged Koyna dam reveal that the crest displacement of the Koyna dam significantly increases with time while the contour plots show that major principal stress at neck level reduces with time. As the modulus of elasticity decreases with ages the stress generated in the concrete structure get reduces. On the other hand with lesser value of modulus of elasticity the structure becomes more flexible and the crest displacement becomes very high that cause the seismic safety of the dam reduce.

SIMULATION OF UNIT CELL PERFORMANCE IN THE POLYMER ELECTROLYTE MEMBRANE FUEL CELL

  • Kim, H.G.;Kim, Y.S.;Shu, Z.
    • International Journal of Automotive Technology
    • /
    • 제7권7호
    • /
    • pp.867-872
    • /
    • 2006
  • Fuel cells are devices that convert chemical energy directly into electrical energy. Owing to the high efficiency of the fuel cells, a large number of research work have been done during these years. Among many kinds of the fuel cells, a polymer electrolyte membrane fuel cell is such kind of thing which works under low temperature. Because of the specialty, it stimulated intense global R&D competition. Most of the major world automakers are racing to develop polymer electrolyte membrane fuel cell passenger vehicles. Unfortunately, there are still many problems to be solved in order to make them into the commercial use, such as the thermal and water management in working process of PEMFCs. To solve the difficulites facing the researcher, the analysis of the inner mechanism of PEMFC should be implemented as much as possible and mathematical modeling is an important tool for the research of the fuel cell especially with the combination of experiment. By regarding some of the assumptions and simplifications, using the finite element technique, a two-dimensional electrochemical mode is presented in this paper for the further comparison with experimental data. Based on the principals of the problem, the equations of electronic charge conservation equation, gas-phase continuity equation, and mass balance equation are used in calculating. Finally, modeling results indicate some of the phenomenon in a unit cell, and the relationships between potential and current density.