• Title/Summary/Keyword: Thermal transpiration

Search Result 23, Processing Time 0.046 seconds

Dry Season Evaporation From Pine Forest Stand In The Middle Mountains Of Nepal

  • Gnawali, Kapil;Jun, KyungSoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.330-330
    • /
    • 2016
  • The quantification of dry season evaporation in regions, where the magnitude of dry season flows is key to the regional water supply, is essential for good water management. Also, tree transpiration has a significant role in the water balance of a catchment whenever it is tree populated, especially in water limited environments. Such is the case in the Middle Mountains of Nepal where dry season flows play a significant role in downstream water provisioning and their proper functioning is key to the welfare of millions of people. This research seeks to study the transpiration of a pine forest stand in the Jikhu Khola Watershed in the Middle Mountains of Nepal. To the author's knowledge, no single study has been made so far to estimate the dry season evaporation from the planted forest stand in the Middle Mountains of Nepal. The study was carried out in planted pine forest embedded within the Jikhu Khola Catchment. Field campaigns of sap flow measurements were carried out from September, 2010 to February, 2011 in the selected plot of 15*15m dimension, to characterize dry season evaporation. This was done by measuring sap fluxes and sapwood areas over the six trees of different Diameter at Breast Height (DBH) classes. The sap flux was assessed using Granier's thermal dissipation probe (TDP) technique while sapwood area was determined using several incremental core(s) taken with a Pressler borer and immediately dyeing with methyl orange for estimating the actual depth of sapwood area. Transpiration of the plot was estimated by considering the contribution of each tree class. For this purpose, sap flux density, sapwood area and the proportion of total canopy area were determined for each tree class of the selected plot. From these data, hourly and diurnal transpiration rates for the plot were calculated for experimental period. Finally, Cienciala model was parameterized using the data recorded by the ADAS and other terrain data collected in the field. The calibrated model allowed the extrapolation of Sap flux density (v) over a six month period, from September 2010 to February 2011. The model given sap flux density was validated with the measured sap flux density from Grainier method.

  • PDF

Experimental study on the heat transfer characteristics of evaporative transpiration cooling (증발분출냉각의 열전달 특성에 관한 실험적 연구)

  • 이진호;남궁규완;김홍제;주성백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1130-1137
    • /
    • 1988
  • Heat transfer characteristics of evaporative transpiration cooling was investigated experimentally in the range of coolant mass flux, 0.002kg/m$^{2}$.sec~0.015m$^{2}$.sec. Glass beads, sand and copper particles were used as porous media and distilled water was used as a conant. The existence of evaporation zone was confirmed on this experimental conditions and its length increases with increasing article size and with decreasing mass flux. In order to get the low surface temperature, porous materials with high thermal conductivity is preferred when the panicle sizes are same, and small particles with low porosity is effective in case of the same material. Due to the relatively small coolant mass flux, evaporative transpiration cooling system could be stable by the capillary effect.

Efficiency Analysis of Knudsen Pump According to Hanji Membrane (한지 멤브레인을 사용한 누센펌프의 효율 분석)

  • Yun, Dong-Ik;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.618-619
    • /
    • 2010
  • Thermal transpiration device(Knudsen pump) having no moving parts can self-pump the gaseous propellant by temperature gradient only (cold to hot). We designed, fabricated the Knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum condition. In this paper, we measured presented pumping efficiency of Knudsen pump according to Hanji membrane.

  • PDF

Analytical Study of heat Transfer in Evaporative Cooling of a Porous Layer (다공층의 증발냉각 열전달에 관한 해석적 연구)

  • 김홍제;이진호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.104-111
    • /
    • 1992
  • In this study, the heat transfer characteristics of the evaporative transpiration cooled system is analytically investigated considering the occurrence of the two-phase evaporation zone. Under the condition of the external heat input, analytical solutions of the three regions (i.e., vapor, liquid and two-phase evaporation zone) are respectively obtained using the matching conditions for the steady-state problem where properties are constant. As results, the length of the evaporation zone increases with increasing heat input and with decreasing mass flow rate. It also increases with increasing particle size, system porosity, thermal conductivity of material, inlet temperature and latent heat of coolant. The position of the lower interface of the evaporation zone have a lot of efforts on the evaporation zone length, the position of the upper interface penetrates deeper into the porous layer with lower thermal conductivity of porous material, higher system porosity and larger particle size.

Preparation and Physical Characteristics of High-Performance Heat Storage.Release Fabrics with PCMMc : Wet coating process (상전이 마이크로캡슐이 함유된 고기능성 축열.발열 직물의 제조 및 물리적 특성 : 습식코팅)

  • Koo, Kang;Choe, Jong-Deok;Choi, Jong-Suk;Kim, Eun-Ae;Park, Young-Mi
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.24-30
    • /
    • 2007
  • Heat storage/release system in textile is a useful tool to increase energy efficiency and enhance comfortable microclimate of clothing. Phase change materials(PCM) are used in regulating storage and release properties of thermal energy. To investigate the temperature regulating ability of fabrics with PCM microcapsule(PCMMc), Nylon fabrics were coated with PCMMc via wet processing and they were characterized by SEM, DSC and infrared thermal analyzer. Also, water moisture transpiration, water penetration resistance, peel strength and washing durability of the fabrics were assessed. The water vapor permeation and water penetration resistance decreased with increasing PCMMc content. In DSC analysis, it can be seen that the microencapsulated fabric showed both exothermic md endothermic phenomena at specific temperature. Peel strength was decreased with increasing PCMMc content.

The Estimation of Transpiration Rate of Crops in Hydroponic Culture in the Plastic Greenhouse (열수지 해석에 의한 온실 수경재배 작물의 증산속도 추정에 관한 연구)

  • Nam, Sang-Woon;Kim, Moon-Ki
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.27-34
    • /
    • 1990
  • The main objective of this study was to find the relationship between transpiration rate and environmental factors for crops in hydroponic culture within plastic greenhouse by using the computer model developed from the heat balance around leaves of a crop. A computer model was developed and verified through comparison with the experimental results for lettuce in hydroponic culture in a polyethylene film house. The model may be extensively used for the water management and thermal environment study of crops in protected culture, if the supplemented studies for some crops would be accomplished.

  • PDF

Effect of Cool Islands on the Thermal Mitigation in Urban Area -Case Study of Taegu Metropolitan City- (대도시에 있어 냉섬의 유형별 온도완화 효과 -대구광역시의 사례 연구-)

  • 박인환;장갑수;김종용;박종화;서동조
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 2000
  • Taegu is notorious as hot and dry summer among Korea cities. One of the most important goals of the open space planning is to ameliorate urban climate of the city. The objective of this research is to evaluate the thermal mitigation effect of the cool islands in Taegu metropolitan city. Cool islands of this paper includes parks and rivers surrounded by or adjacent to urbanized areas. Based on the analysis of the thermal band of Landsat TM at May 17, 1997, the thermal mitigation effect of open spaces in the city could be summarized as follows ; Kumho river showed the largest mitigation effect in terms of the width of mitigation zone and temperature difference. Evaporation from wide water surface and evapo-transpiration from riparian grass land could bring into results. Significant mitigation effect of parks covered with forest can be observed. The temperature range of such parks were between 19.05$^{\circ}C$ and 19.44$^{\circ}C$ However, the thermal mitigation effect of Dalsung park and Apsan park was insignificant. The small size and high percentage of hard paving of the former and the relative low density of the residential areas adjacent to the latter could be the main reason. In conclusion, the thermal mitigation effect in urban ope spaces could be detectedby the employment of thermal band data of Landsat TM and GIS buffering technique.

  • PDF

Study of Knudsen Pump using Vacuum Chamber and It's Upgrade Plan to Thermal Vacuum Chamber (고고도 우주환경 모사용 진공챔버를 이용한 누센펌프의 연구와 열진공챔버로의 개선 방향)

  • Kim, Hye-Hwan;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.361-364
    • /
    • 2009
  • Vacuum facility is required for high altitude space environment test to develop small thruster to be applied for micro-satellite. After selecting vacuum equipment and integrating the chamber to simulate 100-120km attitude with max, $10^{-5}\;torr$. We tested the performance of high vacuum chamber. We designed, fabricated the knudsen pump and analyzed pressure gradient efficiency of membrane according to Knudsen number under vacuum conditions. We described the upgrade plan to a thermal vacuum chamber.

  • PDF

A field Study to Evaluate Cooling Effects of Green Facade under Different Irrigation Conditions - Focusing on modular green facade planted with Hedera helix L and Pachysandra terminalis - (관수조절에 의한 벽면녹화의 냉각효과 분석 연구- 아이비, 수호초를 식재한 모듈형 벽면녹화를 중심으로-)

  • Kim, Eun-Sub;Yun, Seok-Hwan;Piao, Zheng-gang;Jeon, Yoon-Ho;Kang, Hye-Won;Kim, Sang-Hyuck;Kim, Ji-Yeon;Lee, Young-Gu;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.6
    • /
    • pp.121-132
    • /
    • 2021
  • Green facade has a significant impact on building's energy performance by controlling the absorption of solar radiation and improving outdoor thermal comfort through shading and evapotranspiration. In particular, since high-density building does not enough green space, green facade, and rooftop greening using artificial ground plants are highly utilized. However, the level of cooling effect according to plant traits and irrigation control is different. Therefore, in this study, the cooling effect analyzed for a total of 4 cases by controlling the irrigation condition based on hedera and spurge. Although hedera under sufficient water had the highest cooling effect(-2℃~-4℃), had the lowest cooling effect under non-irrigation(+1.1℃~+4.4℃). In addition, hedera under sufficient water had cooling effect than hedera under non-irrigation(-1℃~-8.1℃) and in the case of spurge, it had cooling effect(-0.3℃~-7.8℃) more than non-irrigation. As a result of measuring the amount of transpiration according to the light intensity (PAR) and carbon dioxide concentration conditions, transpiration of hedera was higher than the spurge (respectively 0.63204mmolm-2s-1, 0.674367mmolm-2s-1). The difference in the cooling effect of the green facade under irrigation condition was significant. But the potential cooling effect of green facade according to plants species was different. Therefore, in order to maximize and continuously provide the cooling effect of green facade in urban areas, it is necessary to consider the characteristics of plants and the control of water supply through the irrigation system.

Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer (하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과)

  • Choi, Dong-Ho;Lee, Bu-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.