• Title/Summary/Keyword: Thermal structural durability

Search Result 65, Processing Time 0.022 seconds

An Experimental Study for Integrated Vibration Monitoring System Development in Marine Diesel Engine (선박용 디젤 엔진의 종합 진동 모니터닝 시스템 개발을 위한 실험적인 연구)

  • Lee, D.C.;Joo, K.S.;Nam, T.K.;Kim, S.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.880-885
    • /
    • 2007
  • Diesel engines have been widely used in ships and power plants because of its higher thermal efficiency, mobility and durability compared to other prime movers. Though these merits, diesel engine including main components are sometimes vibrated due to higher combustion pressure in cylinders. Especially torsional, axial and structural vibrations in propulsion shafting may be severely manifested by the malfunction of torsional and axial dampers and misfiring and unbalanced load in cylinder. The structural vibration of main body and turbocharger core hole are also occurred by the loosen top bracing and excess wear-out or failure of turbocharger's bearings. The marine diesel engine should be safely designed from these vibrations. This paper introduces experimental methods to develop the prototype of integrated vibration monitoring system for marine diesel engine.

  • PDF

An Experimental Study of T-mode Vibration on the Diesel Power Plant (디젤 발전소의 T-mode 진동에 관한 실험적 고찰)

  • Lee, D.C.;Nam, T.K.;Bae, Y.C.;Kim, Y.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.411-416
    • /
    • 2005
  • Nowadays, diesel power plant using low speed two stroke diesel engine is widely used in islands and restricted areas. Considerations were given to its benefit of high thermal efficiency, reliability and durability compared to the other prime movers. However, various types of engine vibration affect neighboring buildings to their structural vibration. For this, diesel power plant are held liable for the troubles caused by these vibration. These are mainly due to the X- and H-type engine vibrations which we excited by the X- and H- guide force moment. Authors have identified a structural vibration of new pattern called ‘T-mode vibration’ due to the torsional vibration of shafting system. In this paper, T-mode vibration is analyzed through an experimental method based on the global vibration measurement.

  • PDF

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang;Huiwu Zhang
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2023
  • Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).

Effects of Composition, Structure Design, and Coating Thickness of Thermal Barrier Coatings on Thermal Barrier Performance

  • Jung, Sung-Hoon;Jeon, Soo-Hyeok;Lee, Je-Hyun;Jung, Yeon-Gil;Kim, In-Soo;Choi, Baig-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.689-699
    • /
    • 2016
  • The effects of composition, structure design, and coating thickness of thermal barrier coating (TBC) on thermal barrier performance were investigated by measuring the temperature differences of TBC samples. TBCs with the thin and thick top coats were used for these studies, including TBCs with rare-earth (Gd, Yb, and La) compositions. The thermal barrier performance was enhanced with increasing the thickness of top coat even for thin TBCs, indicating that the thermal barrier performance was commensurate to the thickness of top coat. On the other hand, the bi-layered TBC, which was prepared with Yb-Gd-YSZ feedstock powder, with the buffer layer of high purity 8YSZ showed a better thermal barrier performance than that of regular purity 8YSZ. The interfaces in the bi-layered TBCs had a decisive effect on the thermal barrier performance, showing the performance enhanced with increasing numbers of interfaces. However, a new structural design and an additional process should be considered to reduce stress concentrations and to ensure interface stability, respectively, for improving thermal durability in the multi-layered TBCs.

Pseudo-dynamic and cyclic loading tests on a steel-concrete vertical hybrid structure

  • Wang, Bo;Wu, Tao;Dai, Huijuan;Bai, Guoliang;Wu, Jian
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-409
    • /
    • 2019
  • This paper presents the experimental investigations on the seismic performance of a peculiar steel-concrete vertical hybrid structural system referred to as steel truss-RC tubular column hybrid structure. It is typically applied as the supporting structural system to house air-cooled condensers in thermal power plants (TPPs). Firstly, pseudo-dynamic tests (PDTs) are performed on a scaled substructure to investigate the seismic performance of this hybrid structure under different hazard levels. The deformation performance, deterioration behavior and energy dissipation characteristics are analyzed. Then, a cyclic loading test is conducted after the final loading case of PDTs to verify the ultimate seismic resistant capacity of this hybrid structure. Finally, the failure mechanism is discussed through mechanical analysis based on the test results. The research results indicate that the steel truss-RC tubular column hybrid structure is an anti-seismic structural system with single-fortification line. RC tubular columns are the main energy dissipated components. The truss-to-column connections are the structural weak parts. In general, it has good ductile performance to satisfy the seismic design requirements in high-intensity earthquake regions.

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx (NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구)

  • Shin, Byeongkil;Kim, Janghoon;Yoon, Sanghyeon;Lee, Heesoo;Shin, Dongwoo;Min, Whasik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.596-600
    • /
    • 2011
  • Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.

Mechanical and Thermal Properties of Industrial Protective Fabric with Recycled m-Aramid and Natural Fiber

  • Sung, Eun Ji;Baek, Young Mee;An, Seung Kook
    • Textile Coloration and Finishing
    • /
    • v.30 no.4
    • /
    • pp.227-236
    • /
    • 2018
  • As consciousness of safety becomes an important social issue, the demand for protective clothing is increasing. Conventional flame-retardant cotton working wear has low durability, and working wear with m-aramid fibers are stiff, heavy, less permeable, and expensive. In this study, recycled m-aramid and cotton have been blended to produce woven fabric of different compositions to enhance high performance and comfort to solve aforementioned problems. The fabrics were analyzed according to constituents and various structural factors. Mechanical properties were measured using KES-FB system. The measured thermal properties are TGA, $Q_{max}$, TPP and RPP. Fabric with polyurethane yarn covered by m-aramid/cotton spun yarn is observed to have good wearability. The fabric of open end spun yarn showed more stiffness than that of ring spun yarn. The sample with the high count of yarn has more smooth surface. In addition, high m-aramid content fabric is considered to have relatively high stiffness when using as clothing. In TGA the fabric with higher m-aramid content showed more stable decomposition behavior. The fabric having rough surface showed lower heat transfer properties in $Q_{max}$. The influence of the fabric thickness was important in convection and radiant heat test.

Fire Resistance of High Strength Concrete with Polypropylene and Vinylon Fiber (폴리프로필렌 및 비닐론 섬유를 혼입한 고강도콘크리트의 내화특성)

  • Nam Ji-Hyun;Oh Sang-Gyun;Kim Jung-Kil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.165-169
    • /
    • 2005
  • The fire damage of building wouid effect on the safety of structure. When the reinforced concrete structure is heated by high temperature due to the fire, the structural resisting-force will be decreased. In a way, it is a requirement to use high strength concrete for high rise building. Particularly, fire resistance properties of high-strength concrete is more important than normal strength concretes. The fire outbreak of a high strength concrete by sudden temperature rise is a main problem, and causes crack by thermal stress, loading to the deterioration of the durability. In this study, normal and high strength mortar were exposed to a high temperature environment. And than fundamental data for the character change of concrete heated highly were presented by measuring compressive strength of concrete with polypropylene and vinylon fiber, before and after heating. As the results, it is proven that high strength mortar with polypropylene and vinylon fiber for prevents deterioration of durability by fiber.

  • PDF

Prediction of Long Term Performance and Creep of Laminated Natural Rubber Bearings(NRB) (적층 천연고무 면진장치의 장기성능과 크리프에 대한 예측)

  • Hwang, Kee Tae;Seo, Dae Won;Cho, Sung Gook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.117-125
    • /
    • 2013
  • Seismic isolation has been considered and utilized in various industries as a way to prevent huge damage on to structures by large earthquakes in various industries. The laminated Laminated rubber bearings is are most frequently used in seismic isolation systems. The structural Structural safety could not be assured unless the performance of the rubber bearing is not guaranteed for the life time of the structure under the consideration that the bearing is a critical structural member to sustain vertical loads in the seismically isolated structure. However, there are few studies on the deterioration problems of rubber bearings during their service life. The long term performance of the rubber bearings was not considered in past designs of seismically isolated structures. This study evaluates the long term performance and creep characteristics of laminated natural rubber bearings that are used in seismically isolated buildings. For the this study, a set of accelerated thermal aging tests and creep tests are were performed on real specimens. The experimental results show that the natural rubber bearings would have a stable change rate of change for durability under severe environmental conditions for a long time.

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.