• 제목/요약/키워드: Thermal strain

검색결과 983건 처리시간 0.029초

고온에서의 비선형 변형도를 고려한 콘크리트 구조물에서의 열응력 분포 (Thermal stress of concrete structure at high temperature considering inelastic thermal strain change)

  • 강석원;홍성걸;신영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1145-1150
    • /
    • 2000
  • Concrete behaves as ductile material at high temperature. The existing stress-strain relationship is not valid at high temperature condition. Thus, stress-strain curve of concrete at high temperature is re-established by modifying Saenz's suggestion in this study. A constitutive model of concrete subjected to elevated temperature is also suggested. The model consists of three components; free thermal stain, mechanical strain and thermal creep strain. As the temperature increase, the thermal creep becomes more critical to the failure of concrete. The thermal creep strain of concrete is derived from the modified power-law relation for the steady state creep. The proposed equation for thermal creep employs a Dorn's temperature compensated time theorem

  • PDF

광섬유 격자 센서를 이용한 모르타르시편의 온도구배 및 열 변형 측정 (Measurements of Thermal Gradient and Thermal Strain of Mortar Specimens Using Fiber Bragg Grating Sensor)

  • 임홍철;이은주;전흥재;박동녘
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.133-138
    • /
    • 2003
  • FBG sensor의 다중 측정성을 이용하여 모르타르 시편의 열 변형률과 온도 변화를 동시에 측정하였다. 또한, 광섬유 격자 센서를 이용하여, 열 변화에 따른 모르타르 시편의 내부 온도 구배를 측정하였다. 열 변형률을 기존 strain gauge와 함께 측정하였을 때, strain gauge는 섭씨 60도 이상의 온도에서 오차를 보이는 반면, FBG 센서는 안정된 측정값을 나타냈다. FBG 온도 sensor로 측정한 온도 변화량은 thermocouple로 측정한 값과 비교하였으며, 선형적인 대응관계를 보였다.

광섬유 센서를 이용한 구조물의 열변형 및 온도 측정 (Thermal Strain and Temperature Measurements of Structures by Using Fiber-Optic Sensors)

  • 강동훈;강현규;류치영;홍창선;김천곤
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.184-189
    • /
    • 2000
  • Two types of fiber-optic sensors, EFPI(extrinsic Fabry-Perot interferometer) and FBG(fiber Bragg grating), have been investigated for measurement of thermal strain and temperature. The EFPI sensor is only for measurement of thermal strain and the FBG sensor is for simultaneous measurement of thermal strain and temperature. FBG temperature sensor was developed to measure strain-independent temperature. This sensor configuration consists of a single-fiber Bragg grating and capillary tube which makes it isolated from external strain. This sensor can then be used to compensate for the temperature cross sensitivity of a FBG strain sensor. These sensors are demonstrated by embedding them into a graphite/epoxy composite plate and by attaching them on aluminum rod and unsymmetric graphitelepoxy composite plate. All the tests were conducted in a thermal chamber with the temperature range $20-100^{\circ}C$. Results of strain measurements by fiber-optic sensors are compared with that from conventional resistive foil gauge attached on the surface.

  • PDF

변형률분할법에 의한 12Cr 단조강의 열피로 수명예측 (Thermal-mechanical Fatigue Life Prediction of 12Cr Forged Steel Using Strain Range Partitioning method)

  • 하정수;옹장우;고승기
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1192-1202
    • /
    • 1994
  • Fatigue behavior and life prediction were presented for thermal-mechanical and isothermal low cycle fatigue of 12Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test at 350 to 600.deg. C and isothermal low cycle fatigue test at 600.deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Cyclic softening behavior was observed regardless of thermal-mechanical and isothermal fatigue tests. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. The difference in fatigue lives was dependent upon the magnitudes of inelastic strain ranges and mean stresses. Increase in inelastic strain range showed a tendency of intergranular cracking and decrease in fatigue life, especially for out-of-phase thermal-mechanical fatigue. Thermal-mechanical fatigue life prediction was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase thermal-mechanical fatigue lives, which was quite improved conservatively by a proposed strain range partitioning method.

유지시간 효과를 고려한 12Cr 내열강의 열피로 및 저주기 피로 특성 (Thermal-Mechanical and Low Cycle Fatigue Characteristics of 12Cr Heat Resisting Steel with Hold Time Effects)

  • 하정수;고승기;옹장우
    • 한국자동차공학회논문집
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 1995
  • Isothermal and thermal-mechanical fatigue characteristics of 12Cr heat resisting steel used for high temperature applications were investigated including hold time effects. Isothermal low cycle fatigue test at $600^{\circ}C$ and in-phase, out-of-phase thermal-mechanical fatigue test at 350 to $600^{\circ}C$ were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. Regardless of thermal-mechanical and isothermal fatigue tests, cyclic softening behavior was observed and much more pronounced in the thermal-mechanical fatigue tests with hold times due to the stress relaxation during the hold time. The phase difference between temperature and strain in thermal-mechanical fatigue tests resulted in significantly shorter fatigue life for out-of-phase compared to in-phase. The differences in fatigue lives were dependent upon the magnitudes of plastic strain ranges and mean stresses. During the hold time in the strain-controlled fatigue tests, the increase in the plastic strain range and the stress relaxation were observed. It appeared that the increase in plastic strain range per cycle and the introduction of creep damage made important contributions to the reduction of thermal-mechanical fatigue life with hold time, and the life reduction tendency was more remarkable in the in-phase than in the out-of-phase thermal-mechanical fatigue. Isothermal fatigue tests performed under the combination of fast and slow strain rates at $600^{\circ}C$ showed that the fatigue life decreased as the strain rate and frequency decreased,especially for the low strain ranges.

  • PDF

GRP 복합관의 열팽창계수 측정 (Measurements of Thermal Expansion Coefficients in GRP Pipe)

  • 오진오;윤성호
    • Composites Research
    • /
    • 제25권1호
    • /
    • pp.26-30
    • /
    • 2012
  • 본 연구에서는 스트레인게이지 회로를 이용하여 GRP 복합관의 열팽창계수를 측정하고자 하였다. 이를 위해 다양한 스트레인게이지 회로를 적용하여 알루미늄 보의 열팽창계수를 측정함으로써 측정방법의 타당성을 검증하였다. 또한 스트레인게이지의 부착위치와 반복횟수를 달리하며 또한 열팽창계수가 다른 스트레인게이지를 적용한 경우에 대해 GRP 복합관의 길이방향 및 원주방향 열팽창계수를 측정함으로써 열변형률 결과와 측정결과의 재현성에 미치는 영향을 조사하였다. 연구결과에 따르면 GRP 복합관의 경우 보강된 유리섬유에 의해 원주방향의 열변형률이 제한되어 원주방향 열팽창계수가 길이방향의 열팽창계수에 비해 낮게 나타났다. 또한 GRP 복합관의 후경화로 인해 측정횟수가 증가할수록 측정된 열팽창계수는 다소 증가하지만 증가폭은 점차 감소하였다. 아울러 열팽창계수가 다른 스트레인게이지를 적용하더라도 기준보상시편을 통해 스트레인게이지의 열변형률을 보상하면 동일한 열팽창계수가 얻어짐을 알 수 있었다.

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

수렴성빔 전자회절법을 이용한 $SiO_2/Si$ 계면 부위의 격자 변형량 측정 (Measurements of Lattice Strain in $SiO_2/Si$ Interface Using Convergent Beam Electron Diffraction)

  • 김긍호;우현정;최두진
    • Applied Microscopy
    • /
    • 제25권2호
    • /
    • pp.73-79
    • /
    • 1995
  • The oxidation of silicon wafers is an essential step in the fabrication of semiconductor devices. It is known to induce degradation of electrical properties and lattice strain of Si substrate from thermal oxidation process due to charged interface and thermal expansion mismatch from thermally grown SiO, film. In this study, convergent beam electron diffraction technique is employed to directly measure the lattice strains in Si(100) and $4^{\circ}$ - off Si(100) substrates with thermally grown oxide layer at $1200^{\circ}C$ for three hours. The ratios of {773}-{973}/{773}-{953} Higher Order Laue Zone lines were used at [012] zone axis orientation. Lattice parameters of the Si substrate as a function of distance from the interface were determined from the computer simulation of diffraction patterns. Correction value for the accelerating voltage was 0.2kV for the kinematic simulation of the [012]. HOLZ patterns. The change in the lattice strain profile before and after removal of oxide films revealed the magnitudes of intrinsic strain and thermal strain components. It was shown that $4^{\circ}$ -off Si(100) had much lower intrinsic strain as surface steps provide effective sinks for the free Si atoms produced during thermal oxidation. Thermal strain in the Si substrate was in compression very close to the interface and high concentration of Si interstitials appeared to modify the thermal expansion coefficient of Si.

  • PDF

효과적인 열응력 해석을 위한 사각형 추가 변형률 요소의 개발 (Development of a Quadrilateral Enhanced Assumed Strain Element for Efficient and Accurate Thermal Stress Analysis)

  • 고진환;이병채
    • 대한기계학회논문집A
    • /
    • 제23권7호
    • /
    • pp.1205-1214
    • /
    • 1999
  • A new quadrilateral plane stress element is developed for efficient and accurate analysis of thermal stress problems. It is convenient to use the same mesh and the same shape functions for thermal analysis and stress analysis. But, because of the inconsistency between deformation related strain field and thermal strain field, oscillatory responses and considerable errors in stresses are resulted in. To avoid undesired oscillations, strain approximation is enhanced by supplementing several assumed strain terms based on the variational principle. Thermal deformation is incorporated into the generalized mixed variational principle for displacement, strain and stress fields, and basic equations for the modified enhanced assumed strain method are derived. For the stress approximation of bilinear elements, the $5{\beta}$ version of Pian and Sumihara is adopted. The numerical results for several problems show that the present element behaves well and reduces oscillatory responses. it also results in almost the same magnitude of error as compared with the quadratic element.

12 Cr 강의 열피로 수명단축에 관한 연구 (A study on the thermal-mechanical fatigue life prediction of 12 Cr steel)

  • 하정수;김건영;안희돈
    • 한국정밀공학회지
    • /
    • 제11권4호
    • /
    • pp.114-125
    • /
    • 1994
  • Fatigue behavior and life prediction method were presented for themal-mechanical and isothermal low cycle fatigue of 12 Cr forged steel used for high temperature applications. In-phase and out-of-phase thermal-mechanical fatigue test from 350 .deg. C to 600 .deg. C and isothermal low cycle fatigue test at 600 .deg. C, 475 .deg. C, 350 .deg. C were conducted using smooth cylindrical hollow specimen under strain-control with total strain ranges from 0.006 to 0.015. The phase difference between temperature and strain in thermal-mechanical fatigue resulted in significantly shorter fatigue life for out-of-phase than for in-phase. Thermal-mechanical fatigue life predication was made by partitioning the strain ranges of the hysteresis loops and the results of isothermal low cycle fatigue tests which were performed under the combination of slow and fast strain rates. Predicted fatigue lives for out-of-phase using the strain range partitioning method showed an excellent agreement with the actual out-of-phase thermal-mechanical fatigue lives within a factor of 1.5. Conventional strain range partitioning method exhibited a poor accuracy in the prediction of in-phase range partitioning method in a conservative way. By the way life prediction of thermal-mechanical fatigue by Taira's equivalent temperature method and spanning fartor method showed good agreement within out-of-phase thermal-mechanical fatigue.

  • PDF