• Title/Summary/Keyword: Thermal slumping

Search Result 2, Processing Time 0.015 seconds

Study on the Fabrication of Porous Uranium Oxide Granule Using a Rotary Voloxidizer (회전형 휘발성 산화장치 이용 다공성 우라늄산화물 그래뉼 제조 연구)

  • Lee, Jae-Won;Yun, Yeo-Wan;Shin, Jin-Myeong;Lee, Jung-Won;Park, Guen-IL;Park, Jang-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.642-647
    • /
    • 2011
  • The fabrication characteristics of porous uranium oxide granules from $U_3O_8$ powder was investigated in terms of initial particle bed motions such as slumping and rolling, thermal treatment conditions, and rotational velocities in slumping motion using a rotary voloxidizer. With respect to the initial particle bed motion the recovery rate of granule of above 1 mm in slumping motion was higher than that in the rolling motion. Rolling motion was changed into slumping motion with high slumping frequency by formation of granules from fine particles. Recovery rate of granule significantly increased with the increas in thermal treatment temperature and time of upto 10 h. As the rotational velocity of voloxidizer in the case of the initial particle bed showing slumping motion increased, the recovery rate of granule increased from 81.5 to 88.7%. However, the rotational velocity of 2 rpm provided an effective density, crushing strength and sphericity of granules.

Numerical and Experimental Investigation of the Heating Process of Glass Thermal Slumping

  • Zhao, Dachun;Liu, Peng;He, Lingping;Chen, Bo
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.314-320
    • /
    • 2016
  • The glass thermal forming process provides a high volume, low cost approach to producing aspherical reflectors for x-ray optics. Thin glass sheets are shaped into mirror segments by replicating the mold shape at high temperature. Heating parameters in the glass thermal slumping process are crucial to improve surface quality of the formed glass. In this research, the heating process of a thermal slumping glass sheet on a concave parabolic mold was simulated with the finite-element method (FEM) to investigate the effects of heating rate and soaking temperature. Based on the optimized heating conditions, glass samples 0.5 mm thick were formed in a furnace with a steel concave parabolic mold. The figure errors of the formed glass were measured and discussed in detail. It was found that the formed glass was not fully slumped at the edges, and should be trimmed to achieve better surface deviation. The root-mean-square (RMS) deviation and peak-valley (PV) deviation between formed glass and mold along the axial direction were 2.3 μm and 4.7 μm respectively.