• Title/Summary/Keyword: Thermal sensitivity test

Search Result 82, Processing Time 0.027 seconds

Evaluation of Microcracks in Thermal Damaged Concrete Using Nonlinear Ultrasonic Modulation Technique (비선형 초음파 변조 기법을 이용한 열손상 콘크리트의 미세균열 평가)

  • Park, Sun-Jong;Yim, Hong Jae;Kwak, Hyo-Gyung
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.651-658
    • /
    • 2012
  • This paper concentrates on the evaluation of microcracks in thermal damaged concrete on the basis of the nonlinear ultrasonic modulation technique. Since concrete structure exposed to high temperature accompanies the development of microcracks due to the physical and chemical changes from temperature and exposed time, the adoption of nonlinear approach is required. Instead of using the conventional ultrasonic nondestructive methods which have the limitation in evaluating excessive microcracks, accordingly, a nonlinear ultrasonic modulation method which shows better sensitivity in quantifying microcracks is introduced. Upon the analysis for the modulation of ultrasonic wave and low frequency impact to measure the nonlinearity parameter, which can be used as an indicator of thermal damage, the verification processes for the introduced technique are followed: SEM investigation and permeable pore space test are performed to characterize thermally induced microcracks in concrete, and ultrasonic pulse velocity tests are performed to confirm the outstanding sensitivity of nonlinear ultrasonic modulation technique. In advance, compressive strength of thermal damaged concrete is measured to represent the effect of microcracks on performance degradation. Correlation studies between experimental data and measured data show that nonlinear ultrasonic modulation technique can effectively be used to quantify thermally induced microcracks, and to estimate the compressive strength of thermally damaged concrete.

Development of forest carbon optimization program using simulated annealing heuristic algorithm (Simulated Annealing 휴리스틱 기법을 이용한 임분탄소 최적화 프로그램의 개발)

  • Jeon, Eo-Jin;Kim, Young-Hwan;Park, Ji-Hoon;Kim, Man-Pil
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.197-205
    • /
    • 2013
  • In this study, we developed a program of optimizing stand-level carbon stock using a stand-level yield model and the Simulated Annealing (SA) heuristic method to derive a optimized forest treatment solution. The SA is one of the heuristic algorithms that can provide a desirable management solution when dealing with various management purposes. The SA heuristic algorithm applied 'thermal equilibrium test', a thresholds approach to solve the phenomenon that does not find an optimum solution and stays at a local optimum value during the process. We conducted a sensitivity test for the temperature reduction rate, the major parameter of the thermal equilibrium test, to analyze its influence on the objective function value and the total iteration of the optimization process. Using the developed program, three scenarios were compared: a common treatment in forestry (baseline), the optimized solution of maximizing the amount of harvest(alternative 1), and the optimized solution of maximizing the amount of carbon stocks(alternative 2). As the results, we found that the alternative 1 showed provide acceptable solutions for the objectives. From the sensitivity test, we found that the objective function value and the total iteration of the process can be significantly influenced by the temperature reduction rate. The developed program will be practically used for optimizing stand-level carbon stock and developing optimized treatment solutions.

Inverse Association and Differences in the Distribution of Metabolic Syndrome and Cold Hypersensitivity in the Hands and Feet According to Sasang Constitution (사상체질에 따른 대사증후군과 수족냉증 분포 차이와 역상관관계)

  • Bae, Kwang-Ho;Park, Ki-Hyun;Lee, Siwoo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Objectives This study aimed to examine the differences in the distribution of metabolic syndrome(MetS) and cold hypersensitivity in the hands and feet(CHHF) according to Sasang constitution, and to determine whether CHHF and MetS have an inverse association. Methods MetS and its components, CHHF, Sasang constitution data from 1,998 participants in the Korean medicine Daejeon Citizen Cohort study(KDCC) were obtained. The participants were divided into a non-CHHF(n = 1,270, 63.6%), intermediate(n = 220, 11.0%) and CHHF(n = 508, 25.4%) group according to the thermal sensitivity questionnaire. Sasang constitution was diagnosed by Korea Sasang Constitutional Diagnostic Questionnaire(KS-15). One-way ANOVA and the chi-square test were used for participants' general characteristics and thermal sensitivity and MetS related factors. ANCOVA and logistic regression were used to compare the differences and the odds ratios(ORs) for MetS and its components. Results The MetS and CHHF prevalence rates of the Taeeumin, Soeumin, and Soyangin were 27.6%, 3.8%, 7.7%, and 18.3%, 42.3%, 26.4% respectively. The ANCOVA for MetS components showed that the waist circumference was significantly lower in the CHHF group as compared to the non-CHHF group in total and Soyangin. The logistic regression for MetS prevalence showed that CHHF had a significant inverse association in total(OR = 0.611) and Taeeumin(OR = 0.521). Conclusions The MetS prevalence had the highest in Taeeumin, followed by Soyangin and Soeumin, while the prevalence of CHHF was highest in Soeumin, followed by Soyangin and Taeeumin. In addition, it was confirmed that CHHF and MetS had an inverse association independently.

Diagnosis of Medium Voltage Cables for Nuclear Power Plant

  • Ha, Che-Wung;Lee, Do Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1369-1374
    • /
    • 2014
  • Most accidents of medium-voltage cables installed in nuclear power plants result from the initial defect of internal insulators or the initial failure due to poor construction. However, as the service years of plants increase, the possibility of cable accidents is also rapidly increases. This is primarily caused by electric, mechanical, thermal, and radiation stresses. Recently, much attention is paid to the study of cable diagnoses. To date, partial discharge and Tan${\delta}$ measurements are known as reliable methods to diagnose the aging of medium-voltage cables. High frequency partial discharge measurement techniques have been widely used to diagnose cables in transmission and distribution systems. However, the on-line high frequency partial discharge technique has not been used in the nuclear power plants because of the plant shutdown risk, degraded measurement sensitivity, and application problems. In this paper, the partial discharge measurement with a portable device was tried to evaluate the integrity of the 4.16kV and 13.8kV cable lines. The test results show that the high detection sensitivity can be achieved by the high frequency partial discharge technique. The present technique is highly attractive to diagnose medium voltage cables in nuclear power plants.

A study on abrasive wear characteristics of side plate of FRP ship (온도변화에 따른 유리섬유/폴리우레탄 복합재료의 충격파괴거동)

  • Kim, Byung-Tak;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.45 no.3
    • /
    • pp.188-193
    • /
    • 2009
  • The present study was undertaken to evaluate the effect of temperature on the results of Charpy impact test for glass fiber reinforced polyurethane(GF/PUR) composites. The Charpy impact test were conducted in the temperature range from -50$^{\circ}$ to 50$^{\circ}$. The impact fracture toughness of GF/PUR composites was considerably affected by temperature and it was shown that the maximum value was appeared at room temperature. It is believed that sensitivity of notch on impact fracture energy were increased with decrease in temperature of specimen. As the GF/PUR composites exposed in low temperature, impact fracture toughness of composites decreased gradually owing to the decrease of interface bonding strength caused by difference of thermal expansion coefficient between the glass fiber/polyurethane resin. And decrease of interface bonding strength of composites with decrease in specimen temperature was ascertained by SEM photographs of Charpy impact fracture surface.

A Study on Impact Monitoring Using a Piezoelectric Paint Sensor (압전 페인트 센서를 활용한 충격 모니터링 활용 방안)

  • Choi, Kyungwho;Kang, Donghoon;Park, Seung-Bok;Kang, Lae-Hyong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.349-357
    • /
    • 2015
  • The piezoelectric paint sensor is a paint type sensor comprising of an epoxy and piezoelectric powder, which is the main component of a piezoelectric material. This sensor can be easily attached to any type of structure as compared to other sensors because it is viable to directly apply it on structures, as in the case with a typical paint. In this study, the capability of piezoelectric paint sensor for impact detection was evaluated. In Particular, the applications of the piezoelectric paint sensor for railroad vehicles were considered. There have been various cases reported about the damages caused by flying gravel to the under-cover of the railroad vehicle during operation. In order to prevent this, real-time monitoring of the large under-cover surface of the railroad vehicle is unavoidable. Under the assumption of vehicle application, sensor sensitivities were measured after multiple and prolonged exposure to thermal cycle environment $-20{\sim}60^{\circ}C$). Sensitivity evaluation of paint sensor under environmental conditions was conducted in an aluminum specimen. In results, despite the small variations in sensitivity, we could confirm the applicability of this paint sensor for impact detection even after a severe environmental exposure test.

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

The Effect on the Properties of High Flowing Concrete Using Low Heat Portland Cement by Material and Mixing Variations (저열 포틀랜드 시멘트를 사용한 고유동콘크리트의 사용재료 및 배합 변동에 따른 특성 평가)

  • 하재담;김태홍;유재상;이종열;권영호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.303-308
    • /
    • 2001
  • Recently, concrete structures have become larger and higher and are demanding high performance concrete with lower heat to prevent thermal cracking, far greater workability, high strength and durability, Application of low heat portland(Type IV) cement for the high performance concrete is the best solution to satisfied those requirements. Here are explained the effect on the properties of high flowing concrete using low heat portland cement by material and mixing variations. Variables for sensitivity test were selected items like finess modulus of aggregates, particle size of limestone powder, unit water, superplasticizer, viscosity agent and concrete temperature. The results of this study were be applied to slurry wall of #215 and #216 of underground LNG tank in Inchon.

  • PDF

Effect of aggregate type on heated self-compacting concrete

  • Fathi, Hamoon;Lameie, Tina
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.33-39
    • /
    • 2017
  • In this study, two types of aggregate were used for making self-compacting concrete. Standard cubic specimens were exposed to different temperatures. Seventy-two standard cylindrical specimens ($150{\times}300mm$) and Seventy-two cubic specimens (150 mm) were tested. Compressive strengths of the manufactured specimens at $23^{\circ}C$ were about 33 MPa to 40 MPa. The variable parameters among the self-compacting concrete specimens were of sand stone type. The specimens were exposed to 23, 100, 200, 400, 600, and $800^{\circ}C$ and their mechanical specifications were controlled. The heated specimens were subjected to the unconfined compression test with a quasi-static loading rate. The corresponding stress-strain curves and modulus of elasticity were compared. The results showed that, at higher temperatures, Scoria aggregate showed less sensitivity than ordinary aggregate. The concrete made with Scoria aggregate exhibited less strain. The heated self-compacting concrete had similar slopes before and after the peak. In fact, increasing heat produced gradual symmetrical stress-strain diagram span.

A study on the preparation and characterization of Octa-dodecyloxy Copper-Phthalocyanine LB films (Octa-dodecyloxy Copper-Phthalocyanine LB막 제작에 관한 연구)

  • 구자룡;이한성;김영관;손병청;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.150-153
    • /
    • 1997
  • Langmuir-Blodgett(LB) technique is one of the ways of fabricating organic ultra-thin films. It is well known that It has the advantage to control the alignment and orientation of the molecules in the films. Metallo-phthalocyanines(MPcs) are sensitive to electron affinitive toxic gaseous molecules, such as NO$_2$, NO, SO$_2$. MPcs are thermal, optical, mechanical, chemical stable. Therefore, it is interesting to prepare phthalocyanine LB films containing copper as a chemical sensor for NO$_2$ and SO$_2$ gas and test their sensitivity to these toxic gases. In this study, thin films of Octa-dodecylosy copper-phthalocyanine were prepared by LB technique. $\pi$-A isotherm, transfer ratio, UV-VIS. spectroscopy of these films were investigated. Also current-voltage(I-V) characteristics of these was auto investigated.

  • PDF