• Title/Summary/Keyword: Thermal rise

Search Result 747, Processing Time 0.032 seconds

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (II) - The Effect of the Reynolds Number (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각특성에 관한 연구(II) -레이놀즈 수의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.509-517
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To estimate the thermal performance of the heat-generating components arranged by $5\times11$ in channel flow, three variables are used: the inlet velocity, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. The experimental result is in a good agreement with the numerical analysis. The heat transfer coefficient increases as the Reynolds number increases, while the thermal wake function calculated for each row decreases as the Reynolds number increases. In addition, it is found that Nu-Re correlation equation is Identical to the previous studies, and the empirical correlation equation between the thermal wake function and Re is presented.

An Experimental Study on the Evaluation of Adiabatic Temperature Rise of Concrete (콘크리트의 단열온도 상승량의 정량화에 관한 실험적 연구)

  • 강석화;이용호;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.186-196
    • /
    • 1995
  • In this study, parameters such as unit cement weight and placing temperature which influence on temperature rise and temperature rise velocity are investigated through adiabatic tests for the domestic ordinary portland cement(0PC). Adiabatic temperature rise suggested by Korean Concrete Spec. are compared with that from this experimental results. As a result of this study, adiabatic temperature rise of OPC suggested spec. is overestimated. Also it is shown that 2-parameter equation suggested in the spec. overestimate heat evolution at early age and reasonable prediction of heat evolution can be obtained by using 3-parameter equation. Results of numerical analysis by using the input data from this test and the suggested values from spec. shows similar temperatures. However thermal stresses pridicted using input value from spec. may result 20% more than that from this test in case of externally restricted state.

Analytical Investigation on Temperature Rise of Liquid Oxygen in Propellant Tank (추진제 탱크내의 액체산소 온도상승에 대한 해석적 고찰)

  • Cho Namkyung;Jeong Yonggahp;Kim Youngmog;Jeong Sangkwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.3
    • /
    • pp.25-37
    • /
    • 2005
  • For pump-fed rocket propulsion system, the temperature of LOX to be supplied to turbopump inlet should be satisfied with pump inlet temperature requirement during all operating stages, as excessive temperatures can result in cavitation due to reduction in NPSH, thus either damaging the pump or adversely affecting pump performance rise. So exact estimation of LOX temperature rise is absolutely needed for developing reliable propulsion system. This paper presents systematic analysis scheme for estimating inner process of cryogenic propellant tank which is needed for LOX temperature rise. And this paper presents LOX temperature rise and thermal stratification for all rocket operating stages including cooling, filling, waiting, pre-pressurization and firing, with the application of buoyancy driven boundary layer theory.

Long-term Simulation and Uncertainty Quantification of Water Temperature in Soyanggang Reservoir due to Climate Change (기후변화에 따른 소양호의 수온 장기 모의 및 불확실성 정량화)

  • Yun, Yeojeong;Park, Hyungseok;Chung, Sewoong;Kim, Yongda;Ohn, Ilsang;Lee, Seoro
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.14-28
    • /
    • 2020
  • Future climate change may affect the hydro-thermal and biogeochemical characteristics of dam reservoirs, the most important water resources in Korea. Thus, scientific projection of the impact of climate change on the reservoir environment, factoring uncertainties, is crucial for sustainable water use. The purpose of this study was to predict the future water temperature and stratification structure of the Soyanggang Reservoir in response to a total of 42 scenarios, combining two climate scenarios, seven GCM models, one surface runoff model, and three wind scenarios of hydrodynamic model, and to quantify the uncertainty of each modeling step and scenario. Although there are differences depending on the scenarios, the annual reservoir water temperature tended to rise steadily. In the RCP 4.5 and 8.5 scenarios, the upper water temperature is expected to rise by 0.029 ℃ (±0.012)/year and 0.048 ℃ (±0.014)/year, respectively. These rise rates are correspond to 88.1 % and 85.7 % of the air temperature rise rate. Meanwhile, the lower water temperature is expected to rise by 0.016 ℃ (±0.009)/year and 0.027 ℃ (±0.010)/year, respectively, which is approximately 48.6 % and 46.3 % of the air temperature rise rate. Additionally, as the water temperatures rises, the stratification strength of the reservoir is expected to be stronger, and the number of days when the temperature difference between the upper and lower layers exceeds 5 ℃ increases in the future. As a result of uncertainty quantification, the uncertainty of the GCM models showed the highest contribution with 55.8 %, followed by 30.8 % RCP scenario, and 12.8 % W2 model.

Numerical Analysis of Effect of Inhomogeneous Pre-mixture on Pressure Rise Rate in HCCI Engine by Using Multizone Chemical Kinetics (화학반응수치해석을 이용한 HCCI기관의 예혼합기의 성층화성이 연소시의 압력 상승률에 미치는 영향)

  • Lim, Ock-Taeck
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.5
    • /
    • pp.449-456
    • /
    • 2010
  • The HCCI engine is a prospective internal combustion engine with which high diesel-like efficiencies and very low NOx and particulate emissions can be achieved. However, several technical issues must be resolved before HCCI engines can be used for different applications. One of the issues concerning the HCCI engine is that the operating range of this engine is limited by the rapid pressure rise caused by the release of excessive heat. This heat release is because of the self-accelerated combustion reaction occurring in the engine and the resulting engine knock in the high-load region. The purpose of this study is to evaluate the role of thermal stratification and fuel stratification in reducing the pressure rise rate in an HCCI engine. The concentrations of NOx and CO in the exhaust gas are also evaluated to confirm combustion completeness and NOx emission. The computation is carried out with the help of a multizone code, by using the information on the detailed chemical kinetics and the effect of thermal and fuel stratification on the onset of ignition and rate of combustion. The engine is fueled with dimethyl ether (DME), which allows heat release to occur in two stages, as opposed to methane, which allows for heat release in a single stage.

Iron Core Effects on Maximum Temperature Rise of Superconducting Transformer during Quench (퀜치시 초전도 변압기의 최대온도에 철심이 미치는 영향)

  • Nah, Wan-Soo;Joo, Jin-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.7-12
    • /
    • 1999
  • In this paper, the analytical results on the maximum temperature rise estimation, taking account of the magnetizing current, are presented. Magnetizing current effects are considered for the maximum temperature rise estimation during quenches. By introducing the first order model of the infinite solenoids, we calculate the magnetizing and leakage inductances of the coaxial-wound-superconducting transformers. As the permeability of the transformer core increases, so does the magnetizing inductance, while the leakage inductances and the magnetizing current of the transformer go down. These varying permeability effects on maximum temperature rise estimation is applied to the superconducting transformers, of which specifications have already been published. The calculated results showed sufficient margins to the thermal damage.

  • PDF

Lifetime-Temperature Rise Model for the Evaluation of Degradation in Electric Connections/Contacts (전기적 접속/접촉부 열화 평가를 위한 수명 온도상승 모델)

  • Kim, Jeong-Tae;Kim, Nam-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.2
    • /
    • pp.55-61
    • /
    • 2002
  • In this paper, 'lifetime-temperature rise model' based on the 'lifetime-resistance model' is theoretically Proposed, in order to find out the evaluation method of degradation and the residual lifetime by use of infrared image camera for electric connections/contacts. Two assumptions have been builded up for the 'lifetime-temperature rise model': one is associated with the linear relationship between the temperature ism ΔK and contact resistance, and the other the functional relationship between the temperature of electric connections/contacts and the operating time presenting in the 'lifetime-resistance model'. To prove the proposed model, experiments have been performed for various electric connections/contacts. From the experimental results, measured values were quite similar to the calculated values, which proved the above-mentioned two assumptions. Therefore, by use of 'lifetime-temperature rise model', it is possible to estimate the trend of degradation and the residual lifetime for electric connections/contacts through the temperature measurements .

Cooling Characteristics on the Forced Convection of an Array of Electronic Components in Channel Flow (I) - The Effect of H/B (without the Heat Sink) - (채널 유동장 내에 배열된 전자부품의 강제대류 냉각 특성에 관한 연구(I) -채널과 발열부품의 높이 비(H/B)의 영향(히트싱크가 부착되지 않은 경우)-)

  • Kim, Kwang-Soo;Yang, Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.1
    • /
    • pp.73-80
    • /
    • 2006
  • Present study is concerned with an experimental study on the cooling characteristics of heat-generating components arranged in channels which are made by printed circuit boards. To assess the thermal performance of the heat-generating components arranged by $5\times11$ in flow channel, three variables are used: the velocity of the fluid at the entrance, the height of channel, and row number of the component. The cooling characteristics of the heat-generating components such as the surface temperature rise, the adiabatic temperature rise, the adiabatic heat transfer coefficient, and the effect of thermal wake are compared with the result of the experiment and the numerical analysis. Based on the experiment analysis, some conclusions can be drawn: First of all, the experiment and numerical analysis are identical comparatively; the heat transfer coefficient increases as H/B decreases. Howeve., when H/B is over 7.2, the effect of H/B is rather trivial. The effect is the biggest at the first component from the entrance, and it decreases until the fully developed flow, where it becomes very consistent. The thermal wake function calculated for each row decreases as H/B increases.

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading

  • Akbas, Seref Doguscan;Kocaturk, Turgut
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.109-125
    • /
    • 2012
  • Post-buckling behavior of Timoshenko beams subjected to uniform temperature rising with temperature dependent physical properties are studied in this paper by using the total Lagrangian Timoshenko beam element approximation. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces end therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. The beams considered in numerical examples are made of Austenitic Stainless Steel (316). The convergence studies are made. In this study, the difference between temperature dependent and independent physical properties are investigated in detail in post-buckling case. The relationships between deflections, thermal post-buckling configuration, critical buckling temperature, maximum stresses of the beams and temperature rising are illustrated in detail in post-buckling case.