The effect of heat stress on frame switch splicing of X-box binding protein 1 gene in horse
-
- Asian-Australasian Journal of Animal Sciences
- /
- v.32 no.8
- /
- pp.1095-1103
- /
- 2019
Objective: Among stress responses, the unfolded protein response (UPR) is a well-known mechanism related to endoplasmic reticulum (ER) stress. ER stress is induced by a variety of external and environmental factors such as starvation, ischemia, hypoxia, oxidative stress, and heat stress. Inositol requiring enzyme
Temperature and weather are all around us, quite literally. Furthermore, temperature and weather not only permeate our atmosphere, constantly affecting our visceral states of warmth and coldness, but they metaphorically permeate our language. People, products, and ideas can all be "hot" or "cold." Given this ubiquity, it is perhaps surprising that relatively little research has systematically examined the influence of temperature on choice and judgment. Temperature-related words such as "hot" and "cold" are often used to describe impulsive and calculated behaviors, respectively. These metaphoric connotations of thermal concepts raise the question as to whether temperature, psychological states and decision making are related to each other, and if so, how. The current research examines these questions and finds support for a relationship. Across one field study and one laboratory experiment, I demonstrate that both hot ambient room temperature (Spa) and hot temperature primes (words) trigger decision outcomes in line with the metaphoric association between hot temperature and impulsivity. In the field study, participants were recruited in hot (40-50 degrees Celsius) and cold (10 degrees Celsius) rooms at a spa. Participants were simply asked to indicate their willingness-to-pay (WTP) for three product categories (travel package, birthday dinner, and cell phone). The results showed that participants in the hot room in comparison to those in the cold room were willing to pay more for the same products. Next, I tested if our results would go beyond ambient temperature and would hold if I were to prime temperature concepts by using a different priming method (i.e., subliminal vs. supraliminal). In line with the previous findings in the spa, participants in the hot priming condition were more likely to choose the wrong answer for the bat and baseball question than those in the cold priming condition. In addition, product type (e.g., pleasure vs. necessity) can moderate the effect of hot temperature on impulsivity. Mood and arousal did not mediate participants' responses. My findings seem to suggest that the effects of temperature on decision outcomes can be attributed to metaphoric associations rather than incidental mood or arousal. The current research applies a novel perspective in understanding the relationship between temperature and judgment and decision making. Also, the results have practical implications for packaging, advertising, merchandising, and pricing of goods and services, as well as for public policy and awareness. One of the most natural implications of my findings would be that retailers would be better off carrying more impulse purchase items on hot days. Furthermore, point-of-purchase promotions encouraging impulse purchase is more likely to be effective in retail environments with higher temperature than with lower temperature. In addition, advertisements and product packages evoking hot temperature associations (e.g., beach, sunshine, summer) might lead consumers to pay higher price for the advertised product than those with cold temperature associations.
The characteristic thermoluminescence responses of Teflon thermoluminescent dosimeters to radiations have been studied by the variation of radiation qualities as well as the high dose radiations. The change in the sensitivity of TLDs for different radiation qualities were studied through not only the photon energy dependence but also the change of supralinearity on the photon energy dependence, by exposing
Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.
This study investigated the effect of heat stress on the performance and blood characteristics in commercial pig farms. A total of 180 growing pigs and 180 finishing pigs were assigned to two treatments consisting of thermal-neutral period(TNP) and high-temperature period(HTP) with three replications in floor pen, respectively. Feeding trials in the TNP and HTP were individually performed in autumn and summer seasons, respectively. Temperature-humidity index(THI) was calculated by temperature and humidity. Performance and physiological responses were identified per growth stages and feeding trial. Average temperature and THI were
As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70