• 제목/요약/키워드: Thermal radiation analysis

검색결과 479건 처리시간 0.028초

방사선에 대한 CdTe/CdS 태양전지 특성 검토 (Property of CdTe/CdS Solar Cells on Gamma-irradiation)

  • 김지유;김화정;박해준;하장호
    • 방사선산업학회지
    • /
    • 제8권1호
    • /
    • pp.17-22
    • /
    • 2014
  • In this study, we prepared CdTe/CdS solar cells using a thermal vacuum evaporation method. In particular, $CdCl_2$ treatment was attempted using this same method at $400^{\circ}C$ for 30 min. The prepared CdTe/CdS solar cells were investigated using Fouier transform infrared spectrometry (FTIR), field emission scanning electron microscopy (FE-SEM), and a solar simulator system including light absorption properties, morphological properties, and power conversion efficiency (PCE). In addition, we investigated the gamma-irradiation treatment at dose rates of 0 Gy, 500 Gy, 1 kGy, 10 kGy, and 30 kGy. The characteristics of gamma-irradiation treatment were studied based on the same method described above. In particular, it showed increased values as 0.826% higher than the non-irradiation of 0.448% from PCE analysis.

Thermal-Mixing Analyses for Safety Injection at Partial Loop Stagnation of a Nuclear Power Plant

  • Hwang, Kyung-Mo;Kim, Kyung-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제17권9호
    • /
    • pp.1380-1387
    • /
    • 2003
  • When a cold HPSI (High pressure Safety Injection) fluid associated with an overcooling transient, such as SGTR (Steam Generator Tube Rupture), MSLB (Main Steam Line Break) etc., enters the cold legs of a stagnated primary coolant loop, thermal stratification phenomena will arise due to incomplete mixing. If the stratified flow enters the downcomer of the reactor pressure vessel, severe thermal stresses are created in a radiation embrittled vessel wall by local overcooling. As general thermal-hydraulic system analysis codes cannot properly predict the thermal stratification phenomena, RG 1.154 requires that a detailed thermal-mixing analysis of PTS (pressurized Thermal Shock) evaluation be performed. Also. previous PTS studies have assumed that the thermal stratification phenomena generated in the stagnated loop side of a partially stagnated primary coolant loop are neutralized in the vessel downcomer by the strong flow from the unstagnated loop. On the basis of these reasons, this paper focuses on the development of a 3-dimensional thermal-mixing analysis model using PHOENICS code which can be applied to both partial and total loop stagnated cases. In addition, this paper verifies the fact that, for partial loop stagnated cases, the cold plume generated in the vessel downcomer due to the thermal stratification phenomena of the stagnated loop is almost neutralized by the strong flow of the unstagnated loop but is not fully eliminated.

A mechanistic analysis of H2O and CO2 diluent effect on hydrogen flammability limit considering flame extinction mechanism

  • Jeon, Joongoo;Kim, Yeon Soo;Jung, Hoichul;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • 제53권10호
    • /
    • pp.3286-3297
    • /
    • 2021
  • The released hydrogen can be ignited even with weak ignition sources. This emphasizes the importance of the hydrogen flammability evaluation to prevent catastrophic failure in hydrogen related facilities including a nuclear power plant. Historically numerous attempts have been made to determine the flammability limit of hydrogen mixtures including several diluents. However, no analytical model has been developed to accurately predict the limit concentration for mixtures containing radiating gases. In this study, the effect of H2O and CO2 on flammability limit was investigated through a numerical simulation of lean limit hydrogen flames. The previous flammability limit model was improved based on the mechanistic investigation, with which the amount of indirect radiation heat loss could be estimated by the optically thin approximation. As a result, the sharp increase in limit concentration by H2O could be explained by high thermal diffusivity and radiation rate. Despite the high radiation rate, however, CO2 with the lower thermal diffusivity than the threshold cannot produce a noticeable increase in heat loss and ultimately limit concentration. We concluded that the proposed mechanistic analysis successfully explained the experimental results even including radiating gases. The accuracy of the improved model was verified through several flammability experiments for H2-air-diluent.

의복 소재 변경에 따른 인체 열상신호 변화 특성 (Variation of Human Thermal Radiation Characteristics Applying Different Clothing Materials)

  • 장인중;배지열;이남규;곽휘권;조형희
    • 한국군사과학기술학회지
    • /
    • 제22권5호
    • /
    • pp.644-653
    • /
    • 2019
  • With the development of themal observatory device(TOD), thermal camouflage system has been applied not only to the weapon system but also to the combat suit for soldiers. In this paper, the characteristic of thermal radiation of human body depending on the clothing material properties was analyzed through numerical simulations. The bioheat equation with thermoregulatory model was solved to obtain the realistic surface temperature of human body and these results are combined with the emissivity of human skin and clothing in order to calculate the thermal signature from the human body. According to each thermal resistance of clothing, the optimal background radiance which makes contrast radiance intensity(CRI) be lowest is different. Also, the average CRI variation per thermal resistance change is about twice as much as the case of evaporative resistance change.

심지층 고준위 핵폐기물 처분용기의 열응력 해석 (Thermal Stress Analysis of Spent Nuclear Fuel Disposal Canister)

  • 하준용;권영주;최종원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.617-620
    • /
    • 1997
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500m underground is done for the underground pressure variation. Since the nuclear fuel disposal usually emits much heat and radiation, its careful treatment is required. And so a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences some mechanical external loads such as hydrostatic pressure of underground water, swelling pressure of bentonite buffer, and the thermal load due to the heat generation of spent nuclear fuel in the basket etc.. Hence, the canister should be designed to designed to withstand these loads. In this paper, the thermal stress analysis is done using the finite element analysis code, NISA.

  • PDF

몬테칼로 코드를 이용한 중수로 Calandria에서의 $(n,\;{\gamma})$ 반응유발 열중성자속분포 계산 (Monte Carlo Calculation of Thermal Neutron Flux Distribution for (n, v) Reaction in Calandria)

  • 김순영;김종경;김교윤
    • Journal of Radiation Protection and Research
    • /
    • 제19권1호
    • /
    • pp.13-22
    • /
    • 1994
  • CANDU 6 중수형 원자로 운전중에 Calandria Shell내에서 발생하는 $(n,\;{\gamma})$ 반응유발 열중성자속분포와 CANDU 6 발전소의 측면 및 하단 차폐구조에서의 방사선 선량률을 계산하기 위하여 몬테칼로 방법을 이용한 MCNP 4.2 코드를 사용하였다. 계산결과, Mainshell, Annular Plate와 Subshell내 의 열중성자속분포는 $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$로 나타났고, 이는 DOT 4.2 코드의 계산결과와 비교해 볼 때 약간 큰 값들의 분포를 보여주고 있다. 이 계산결과의 응용으로서 작업자 접근가능지역 (Worker Accessible Areas)에서의 감마선량률을 계산해본 결과 설계목표치인 $6{\mu}Sv/h$보다 낮은 값을 주는 것으로 나타났다. $(n,\;{\gamma})$ 반응유발 열중성자속분포에 대한 MCNP 4.2 코드의 계산결과는 CANDU 6형 원자로의 방사선 차폐해석에 중요한 자료로 널리 이용될 수 있을 것이다.

  • PDF

Numerical and experimental investigation on the temperature distribution of steel tubes under solar radiation

  • Liu, Hongbo;Chen, Zhihua;Zhou, Ting
    • Structural Engineering and Mechanics
    • /
    • 제43권6호
    • /
    • pp.725-737
    • /
    • 2012
  • The temperature on steel structures is larger than the ambient air temperature under solar radiation and the temperature distribution on the affected structure is non-uniform and complicated. The steel tube, as a main structural member, has been investigated through experiment and numerical analysis. In this study, the temperature distribution on a properly designed steel tube under solar radiation is measured. A finite element transient thermal analysis method is presented and verified by the experimental results and a series of parametric studies are carried out to investigate the influence of various geometric properties and orientation on the temperature distribution. Furthermore, a simplified approach is proposed to predict the temperature distribution of steel tube. Based on both the experimental and the numerical results, it is concluded that the solar radiation has a significant effect on the temperature distribution of steel tubes. Under the solar radiation, the temperature of steel tubes is about $20.6^{\circ}C$ higher than the ambient air temperature. The temperature distribution of steel tubes is sensitive to the steel solar radiation absorption, steel tube diameter and orientation, but insensitive to the solar radiation reflectance and thickness of steel tube.

전기방사된 나일론66 나노웹의 열적·기계적 특성에 전자선 조사가 미치는 영향 (The Effects of Electron Beam Irradiation on Thermal and Mechanical Properties of Electrospun Nylon 66 Nano-web)

  • 전준표;강효경;강필현
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.69-73
    • /
    • 2011
  • Polyamide 66 (PA66) nanofibers with Triallyl cyanurate (TAC) were obtained by electrospinning of formic acid and chloroform solution. Electron beam irradiation of PA66 nanofiber with and without TAC was carried out over a range of absorbed doses (20~100 kGy) in nitrogen. The characterization of the irradiated PA66 nanofibers and PA66 nanofibers with TAC was done by scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), thermogravimetric analysis (TGA) and universal testing machine (UTM). The results of the SEM image analysis confirmed that the morphology of PA66 nanofibers was not altered by electron beam. The amount of TAC in PA66 nanofiber with TAC was identified by $^1H-NMR$ analysis. The degradation temperature of PA66 nanofibers with TAC at an absorbed dose of 20~100 kGy was higher than the irradiated PA66 nanofiber without TAC. On the other hand, the decreasing rate of modulus of irradiated PA66 nanofibers with TAC was less than PA66 nanofibers.

증기누출사고의 영향평가에서 제트화재에 미치는 매개변수의 영향 (The Effects of Parameters Affecting the Results in the Jet Fire for the Vapor Release Accident)

  • 조지훈;하정호;함병호;윤대건;김태옥
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 1996년도 학술발표회
    • /
    • pp.53-56
    • /
    • 1996
  • In order to propose the method of the consequence analysis for fire accidents by the heavy gas release and to obtain optimum conditions of parameter selections, the consequence analysis for jet fire by the accident of xylene vapor release were performed. And the effect and the sensitivity analysis of parameters affecting the consequence were investigated. Simulation results showed that important parameters affecting results of the xylene vapor release accident were mainly hole diameter, interested distance, wind speed, and so on. For the jet fire, the accident result and the sensitivity of thermal radiation were increased with the decrease of interested distance and the increase of hole diameters, and the accidental result was increased as the increase wind speed, but the sensitivity of thermal radiation was decreased.

  • PDF

A Reference Container Concept for Spent Fuel Disposal : Structural safety for dimensioning of the reference container

  • Choi, Jong-Won;Kwon, Sang-Ki;Kang, Chul-Hyung;Kwon, Young-Joo
    • Journal of Radiation Protection and Research
    • /
    • 제29권1호
    • /
    • pp.49-55
    • /
    • 2004
  • This paper presents the mechanical and thermal stress analysis of a disposal canister to provide basic information for dimensioning the canister and configuration of the canister components. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head, and the thermal load build up in the container.