• Title/Summary/Keyword: Thermal optical method

Search Result 466, Processing Time 0.028 seconds

Thermal property evaluation of semiconductor laser (반도체 레이저의 열적 특성 평가)

  • 박경현
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.79-81
    • /
    • 1990
  • Temperature distribution of laser diode chip mounted on ideal heat kink was calculated by numerical analysis. In numerical analysis, infinite difference method and Gauss-Scidel iteration was adopted on the basis of two dimensional heat conduction phenomena. As a result, temperature increase of active medium of laser diode driven at 60mA was calculated to be 1.47$^{\circ}C$

  • PDF

Derivation of the refractive index profile equation of K-Na ion-exchange waveguide by a rapid thermal method (급열법에 의한 K-Na 이온교환 도파로의 굴절율 분포식산출)

  • 강승민
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1990.02a
    • /
    • pp.237-241
    • /
    • 1990
  • A detailed theoretical and experimental study of k-na exchange in soda lime silicate glasses by RTP is presented. Concentration profiles i.e. index profiles are given by complementary error function added Gaussian function. The estimated diffusion coefficient is 1.54${\mu}{\textrm}{m}$2/min.

  • PDF

THERMAL AND STRUCTURAL ANALYSIS OF FIMS GRATING (원자외선 분광기 FIMS 회절격자의 열 및 구조해석)

  • 선광일;육인수;유광선;박장현;강경인
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.81-93
    • /
    • 2001
  • Far ultraviolet IMaging Spectrograph (FIMS) should be designed to maintain its structural stability and to minimize optical performance degradation in launch and in operation enviroments. The structural and thermal analyzes of grating and grating mount system, which are directly related to FIMS optical performance, was performed using finite element method. The grating mount was made to keep the grating stress down, while keeping the natural frequency of the grating mount higher than 100 Hz. Transient and static thermal analyzes were also performed and the results shows that the thermal stress on the grating can be attenuated sufficiently. The optical performance variation due to temperature variation was with the allowed range.

  • PDF

Fatigue Life Analysis for Solder Joint of Optical Thin Film Filter Device (다층 박막 광학 필터 디바이스의 패키징시 솔더 조인트의 피로파괴 수명 해석)

  • 김명진;이형만
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.19-26
    • /
    • 2003
  • Plastic and creep deformations of a solder joint on thermal cycle play an important role in the reliability of optical telecommunication components. Solder joint strain is increased with the thermal cycle time and it causes mis-alignments and power loss in the optical component. Furthermore, the component can be failed since the deformation exceed the limitation of the fatigue life. We applied the finite element analysis method to solve the problem of the solder joint reliability on thermal cycle. Plastic and creep deformations are calculated by the finite element method. And, the fatigue lire is predicted by using creep-fatigue prediction models with calculated strains. The temperature conditon of the analysis was referred from the Telcordia reliability schedule (-40 to 75). Also, the three ramp renditions, 1/min, 10/min and 50/min, and dwelling time were considered to analyze the differences of results.

  • PDF

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF

Solid-state Reactions in Ni/Si Multilayered Films, Investigated by Optical and Magneto-optical Spectroscopy

  • Lee, Y. P.;Kim, S. M.;Y. V. Kudryavtsev;Y. N. Makogon
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.7-9
    • /
    • 2003
  • Solid-state reactions in Ni/Si multilayered films (MLF) with an overall stoichiometry of $Ni_2Si$, NiSi and $NiSi_2$, induced by ion-beam mixing (IBM) and thermal annealing, were studied by using spectroscopic ellipsometry and magneto-optical spectroscopy as well as x-ray diffraction (XRD). The mixing was performed with Ar+ ions of an energy of 80 keV and a dose of $1.5 x\times10^{16}$ $Ar^+$/$\textrm{cm}^2$. It was shown that the IBM induces structural changes in the Ni/Si MLF, which cannot be detected by XRD but are confidently recognized by the optical method. A thermal annealing at 673 K of the Ni/Si MLF with an overall stoichiometry of NiSi and $NiSi_2$ causes formation of the first η -NiSi phase. The first trace for $NiSi_2$ phase on the background of NiSi one was detected by XRD after an annealing at 1073 K while, according to the optical results, $NiSi_2$ turns out be the dominant phase for the annealed Ni/Si MLF with an overall stoichiometry of $NiSi_2$.

The Study on Properties of Multicomponent Optical Glass Fiber by Adding Ga$_2$O (Ga$_2$O$_3$첨가에 따른 다성분계 Optical Glass Fiber의 특성에 관한 연구)

  • 윤상하;강원호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.128-134
    • /
    • 1996
  • In this study, the thermal and optical properties of multicomponent glass optical fiber by adding heavy metal oxide Ga$_2$O$_3$were investigated. The fiber samples were made by rod in tube method. The optical loss of fiber was measured in 0.3~1.8${\mu}{\textrm}{m}$ wavelength region. As Ga$_2$O$_3$increased up to 20wt%, the transition and softening temperature of bulk glass were increased from 495$^{\circ}C$ to 579$^{\circ}C$ and from 548$^{\circ}C$ to 641$^{\circ}C$respectively. Whereas the thermal expansion coefficient was decreased from 102 to 79.1$\times$10$^{-7}$ $^{\circ}C$. The refractive index was increased from 1.621 to 1.665, and IR cut-off wavelength was enlarged from 4.64${\mu}{\textrm}{m}$ to 6.1${\mu}{\textrm}{m}$. The optical loss of fiber was decreased and more remarkably decreased in 1.146${\mu}{\textrm}{m}$~1.8${\mu}{\textrm}{m}$ wavelength region.

  • PDF

Measurement of Thermal Diffusivity and the Optical Properties of a Carbon Nanotube Dispersion by Using the Thermal Lens Effect (열렌즈 효과를 이용한 탄소 나노 튜브 분산액의 열확산도와 광학적 특성 측정)

  • Park, Hyunwoo;Kim, Hyunki;Kim, Sok Won;Lee, Joohyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1167-1172
    • /
    • 2018
  • Carbon nanotubes (CNTs) are structures of carbon atoms bonded together in hexagonal honeycomb shapes, with multi-walled CNTs having a very high thermal conductivity of $3000W/m{\cdot}K$ and single-walled CNTs having a conductivity of $6000W/m{\cdot}K$. In this work, the transmittance and the thermal diffusivity of a multi-walled carbon nanotube dispersion with a concentration of 1.5 M were measured using a single beam method, a dual beam method, and the thermal lens effect. The nonlinear optical coefficients were obtained by using the z-scan method, which moved the sample in the direction of propagation of the single laser beam, propagation and the thermal diffusivity was measured using a double laser beam. As a pump beam, a diode-pumped solid state (DPSS) laser with a wavelength of 532 nm and an intensity of 100 mW was used. As the probe beam, a He-Ne laser having a wavelength of 633 nm and an intensity of 5 mW was used. The experimental result shows that when the concentrations of the sample were 9.99, 11.10, 16.65, and 19.98 mM, the nonlinear absorption coefficients were 0.046, 0.051, 0.136 and 0.169 m/W, respectively. Also, the nonlinear refractive indices were 0.20, 0.51, 1.25 and $1.32{\times}10^{-11}m^2/W$, respectively, and the average thermal diffusivity was $1.33{\times}10^{-6}m^2/s$.

Optimization of Heatsink and Analysis of Thermal Property in 75W LED Module for Street Lighting (75W급 LED 가로등 모듈의 방열판 최적화와 열특성 분석)

  • Lee, Seung-Min;Lee, Se-Il;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.609-613
    • /
    • 2010
  • In this paper, we optimized and simulated the heatsink of 75W LED module for street lighting and evaluated the optical properties with the manufactured heatsink. the structure of LED package make simple as chip and heatslug and thermal flow is analyzed by using the FEM(Finite Element Method) with CFdesign V10. Also, we measured the temperature of heatsink and evaluated the optical properties with infrared thermal image camera and integrated sphere system for luminous flux in $1\;[m^3]$ box. As results, Heatsink optimized in 3 mm pin thickness, 6 mm base thickness and 16 number of pin count by using Heatsink-designer and got the results which is the temperature of $47.37\;[^{\circ}C]$ and thermal resistance of $0.48407\;[W/^{\circ}C]$. In thermal flow simulation, the temperature of heatsink decreased from $51.54\;[^{\circ}C]$ to $51.51\;[^{\circ}C]$ and the temperature of heatsink by the time in real measurement decreased from $47.03\;[^{\circ}C]$ to $46.87\;[^{\circ}C]$. Moreover, we improve 0.68 % in the decreased ratio of the luminous flux.

Study on the Thermal Deformation of the Air-conditioner Indoor Unit Assembly Using 3D Measurement and Finite Element Analysis (에어컨 실내기 사출 조립품의 열 변형 3D측정과 유한요소해석)

  • Hong, Seokmoo;Hwang, Jihoon;Kim, Cheulgon;Eom, Seong-uk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.251-255
    • /
    • 2015
  • Thermal deformation, such as bending and twisting, occurs among the polymer parts of air-conditioner indoor units because of repetitive temperature change during heating operation. In this study, a numerical method employing finite-element analysis to efficiently simulate the thermal deformation of an assembly is proposed. Firstly, the displacement of an actual assembly produced by thermal deformation was measured using a 3D optical measurement system. The measurement results indicated a general downward sag of the assembly, and the maximum displacement value was approximately 1 mm. The temperature distribution was measured using a thermographic camera, and the results were used as initial-temperature boundary conditions to perform temperature-displacement analysis. The simulation results agreed well with the measured data. To reduce the thermal deformation, the stiffness increased 100%. As the results, the maximum displacement decreased by approximately 5.4% and the twisting deformation of the holder improved significantly.