• Title/Summary/Keyword: Thermal isomerization

Search Result 18, Processing Time 0.021 seconds

The Mechanisms for Thermal and Photochemical Isomerizations of N-Substituted 2-Halopyrroles: Syntheses of N-Substituted 3-Halopyrroles

  • Park, Sung-Hyun;Ha, Hong-Joo;Lim, Chul-Taek;Lim, Dong-Kwon;Lee, Kwang-Hee;Park, Yong-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1190-1196
    • /
    • 2005
  • Halopyrroles, N-substituted 2-halopyrroles were prepared by halogenation of N-substituted pyrroles with NBS, NCS, or surfuryl chloride. N-Substituted 3-halopyrroles were synthesized by acid-catalyzed thermal and photochemical isomerization reactions of N-substituted 2-halopyrroles. Both the thermal and photochemical reactions were acid-catalyzed. For the acid-catalyzed isomerization, a mechanism of [1,3] bromine shift followed by deprotonation is operated. For the acid-catalyzed photoisomerization, an excited triplet state of 2-protonated N-benzyl-2-halopyrrole produces an intermediate N-substituted pyrrole complex with halonium ion which is equilibrated with N-substituted pyrrole plus halonium ion, and then the halonium ion newly adds to 3-position of N-substituted pyrrole followed by deprotonation to afford N-benzyl-3-halopyrrole.

A Study of the Isomerization Reaction Rates of Azobenzene Derivatives (아조벤젠 유도체의 이성질화 반응속도에 관한 연구)

  • Yang, Si Yeong;Kim, Jong Gyu;Heo, Yeong Deok;Choe, Yeong Sang
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.8
    • /
    • pp.552-561
    • /
    • 1994
  • The cis → trans thermal isomerization of azobenzene derivatives has been studied. A sizable solvent effect on the rates for thermal isomerization of push-pull azobenzenes are observed. It is suggested that the isomerization proceeds via a rotational mechanism. For non push-pull azobenzenes, the lack of solvent effects on the rate of isomerization was observed. This suggests that the isomerization proceeds via an inversional mechanism for non push-pull azobenzenes.

  • PDF

Oxidation and Isomerization of Lycopene under Thermal Treatment and Light Irradiation in Food Processing

  • John Shi;Ying Wu;Mike Bryan;Maguer, Le Marc
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.179-183
    • /
    • 2002
  • Lycopene as a natural antioxidant may provide protection against a broad range of epithelial cancers and chronic diseases. Lycopene concentrate extracted from tomatoes can be used as functional food. Lycopene would undergo degradation via isomerization and oxidation under different processing conditions, which impact its bioactivity and reduce the fuuctionality for health benefits. Heat and light induce lycopene oxidation and isomerization of all-trans form to cis form. The effects of thermal treatment and light irradiation on the stability of lycopene were determined. Results have shown that lycopene stability depends on the extent of oxidation and isomerization. Cir-isomers are less stable than trans-isomers. The level of cis-isomers increased as treatment time increased but only for a short period during the beginning of the treatment. The major effect of thermal treatment and light irradiation was a significant decrease in the total lycopene content. A true assessment of health benefits of lycopene concentrate depends on the lycopene content and the composition of all trans-isomers and cia-isomers.

Photoresponsive Arylether Dendrimers with Azobenzene Core and Terminal Vinyl Groups

  • Lee, Ji-Hye;Choi, Dae-Ock;Park, Ji-Eun;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.761-766
    • /
    • 2008
  • Photoresponsive arylether dendrimers Bis-azo-Gn(3,5) 1a-1c and Bis-azo-Gn(3,4,5) 2a-2c (n = 1-3) with an azobenzene unit at the core and several vinyl groups (3,5-bis(but-3-enyloxy)phenyl groups or 3,4,5-tris(but-3- enyloxy)phenyl groups) at the periphery have been prepared. Their structures and reversible trans-cis isomerization behaviors have been investigated by $^1H$-NMR, $^{13}C$-NMR, MALDI-TOF-Mass, and UV-vis spectra. All six azobenzene-cored dendrimers carried out very fast trans $\rightarrow$ cis photoisomerization on irradiation of 350 nm light and reached to the photostationary state within 180 s. During the dark incubation, slow thermal back reversion from cis to trans form is observed for all six dendrimers and is completed within 3 days for 1a-1c and 1 day for 2a-2c. Isomerization efficiency decreases with increasing generation. However, the initial reaction rates of both trans $\rightarrow$ cis photochemical isomerization and cis $\rightarrow$ trans thermal isomerization increases significantly with increasing generation for dendrimers for 1a-1c but only slightly for 2a-2c.

Analysis of Cis- Trans Photoisomerization Mechanism of Rhodopsin Based on the Tertiary Structure of Rhodopsin

  • Yamada, Atsushi;Yamato, Takahisa;Kakitani, Toshiaki;Yamamoto, Shigeyoshi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.51-54
    • /
    • 2002
  • We propose a novel mechanism (Twist Sharing Mechanism) for the cis-trans photoisomerization of rhodopsin, based on the molecular dynamics (MD) simulation study. New things devised in our simulations are (1) the adoption of Mt. Fuji potentials in the excited state for twisting of the three bonds C9=C10, C11=C12 and C13=14 which are modeled using the detailed ab initio quantum chemical calculations and (2) to use the rhodopsin structure which was resolved recently by the X-ray crystallographic study. As a result, we found the followings: Due to the intramolecular steric hindrance between 20-methyl and 10-H in the retinal chromophore, the C12-C13 and C10-C11 bonds are considerably twisted counterclockwise in rhodopsin, allowing only counterclockwise rotation of the C11 =C12 in the excited state. The movement of 19-methyl in rhodopsin is blocked by the surrounding three amino acids, Thr 118, Met 207 and Tyr 268, prohibiting the rotation of C9=C10. As a result only all-trans form of the chromophore is obtainable as a photoproduct. At the 90$^{\circ}$ twisting of C11=C12 in the course of photoisomerization, twisting energies of the other bonds amount to about 20 kcal/mol. If the transition state for the thermal isomerization is assumed to be similar to this structure, the activation energy for the thermal isomerization around C11=C12'in rhodopsin is elevated by about 20 kcal/mol and the thermal isomerization rate is decelerated by 10$\^$-14/ times than that of the retinal chromophore in solution, protecting photosignal from the thermal noise.

  • PDF

The Study on the Thermal Isomerization of Pinane (PINANE의 열 이성화 반응에 관한 연구)

  • Lee, Jung-Bock;Kim, Chang-Bae
    • Analytical Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.373-379
    • /
    • 1992
  • The pyrolysis conditions for the thermal isomerization products of pinane were carried out by the furnace type pyrolyzer and the curie-point pyrolyzer equipped with gas chromatograph and mass spectrometer. It was confirmed that curie-point type is much better furnace type, and high yield (70%) of citronellene was obtained from pinane as the main isomerization product under the best conditions by curie-point type. The optimum conditions of pyrolysis are $590^{\circ}C$ for 4 sec. and the major products were indentified as citronellene, m-Menth-6-ene, m-Menth-1-ene and 1-Methyl-4-(1-methylethylidiene) cyclohexane.

  • PDF

The rate-determining step in the dark state recovery process in the photocycle of PYP

  • Sasaki, Jun;Kumauchi, Masato;Hamada, Norio;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.130-133
    • /
    • 2002
  • The last step in the photocycle of photoactive yellow protein (PYP) is a spontaneous recovery of the dark state from the active state in which the p-coumaric acid chromophore is thermally isomerized, concomitantly with the deprotona- tion of the chtomophore and the refolding of the protein moicty. For the purpose of understanding the mechanism of the thermal back-isomerization, we have investigated the rate-determining step by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction (1). The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by 1 to 3 three orders of magnitude. By evaluating temperature-dependence and pH-dependence of the kinetics of the dark state recovery, it was found that the retardation by mutations resulted from elevation of the activation enthalpy ( H$\^$┿/) and that the pKa of the chromophore, which was affected by the mutation, is in a linier correlation with the amplitude of the rate constants. It was, therefore, deduced from the correlation that the free energy for crossing the activated state in the dark recovery process is proportional to the free energy for the deprotonation of the chromophore, identifying the rate-determining step as the deprotonation of the chromophore. (1) Devanathan, S. Genick, U. K. Canestrelli, I. L. Meyer, T. E. Cusanovich, M. A. Getzoff, E. D. Tollin, G., Biochemistry 1998, 37, 11563 - 11568

  • PDF

Theoretical Study of Cycloaddition Reactions of C60 on the Si(100)-2×1 Surface

  • Rashid, Mohammad Harun Or;Lim, Chul-Tack;Choi, Cheol-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1681-1688
    • /
    • 2010
  • Density functional theory was adopted to study the various surface products and their reaction channels focusing on the on-dimer configuration which has not been suggested before. Energetic results show that the most stable on-dimer configuration is the 6,6-[2+2] structure which resembles the typical [2+2] cycloaddition product. The 6,6-[2+2] product is also more stable than any other possible surface structures of inter-dimer configuration further suggesting its existence. Potential energy surface scan along various possible initial surface reactions show that some of the possible on-dimer surface products require virtually no reaction barrier indicating that initial population of on-dimer surface products is thermodynamically determined. Various surface isomerization reaction channels exist further facilitating thermal redistribution of the initial surface products.