• 제목/요약/키워드: Thermal interface materials

검색결과 415건 처리시간 0.029초

Cu pillar 범프 내의 금속간화합물 성장거동에 미치는 시효처리의 영향 (Effect of Thermal Aging on the Intermetallic compound Growth kinetics in the Cu pillar bump)

  • 임기태;이장희;김병준;이기욱;이민재;주영창;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제14권4호
    • /
    • pp.15-20
    • /
    • 2007
  • 시효처리에 따른 Cu pillar 범프 내 다양한 계면에서의 금속간화합물 성장거동을 각각 120, 150, $165^{\circ}C$의 온도에서 300시간동안 시효처리하면서 연구하였다. 분석 결과 Cu pillar와 SnPb 계면에서는 $Cu_6Sn_5$$Cu_3Sn$이 관찰되었고, 시효처리 시간이 경과함에 따라 parabolic 형태로 성장하였다. 또한 시효처리 온도가 높을수록 시간에 따른 $Cu_6Sn_5$$Cu_3Sn$의 성장속도는 더욱 빨랐다. kirkendall void는 Cu Pillar와 $Cu_3Sn$ 사이의 계면과 $Cu_3Sn$ 내부에서 형성되었고, 시효처리 시간이 경과함에 따라 성장하였다. 리플로우 후에 SnPb와 Ni(P)사이의 계면에서는 $(Cu,Ni)_6Sn_5$가 형성되었고, 시효처리 시간에 따른 $(Cu,Ni)_6Sn_5$거 두께 변화는 관찰되지 않았다. 시효처리 온도와 시간에 따른 금속간화합물의 두께 변화를 이용하여 전체$(Cu_6Sn_5+Cu_3Sn)$금속간화합물과 $Cu_6Sn_5,\;Cu_3Sn$ 금속간화합물의 성장에 대한 활성화 에너지를 구해본 결과 각각 1.53, 1.84, 0.81 eV의 값을 가지고 있었다.

  • PDF

CLAD강의 DEBONDING 현상에 대한 연구(1) -열처리에 의한 clad강 계면의 강도 약화- (A Study on the Debonding Phenomena of Clad Steel(1) -Deterioration of Interfacial Strength in Clad Steel by Thermal Treatment-)

  • 윤중근;김희진
    • Journal of Welding and Joining
    • /
    • 제5권3호
    • /
    • pp.28-37
    • /
    • 1987
  • To clarify the debonding phenomena of clad steel, the effect of thermal treatment (temperature, holding time) on the interfacial strength of clad steel was preliminarily investigated. From this study, it was confirmed that the interfacial strength of clad steel was deteriorated by thermal treatment and the amount of strength deteriorated, depending on the condition of thermal treatment, could be evaluated by the following equation. ${\sigma}_{ HT}/{\sigma}_{i}/=A_{0}-A\;exp(-Q/RT)log(t/t_{0})$ This equation implies that temperature has a far strong effect on strength deterioration than tiem. The deterioration of interfacial strength of clad steel after thermal treatment may be derived from the thermal stress caused by the difference in thermal expansion coefficient between component materials and microstructural change along the interface.

  • PDF

로터리형 원자층 증착법을 이용한 Bi-Te계 소결체의 열전 성능 개선 (Thermoelectric Performance Enhancement of Sintered Bi-Te Pellets by Rotary-type Atomic Layer Deposition)

  • 정명준;박지영;은수민;최병준
    • 한국분말재료학회지
    • /
    • 제30권2호
    • /
    • pp.130-139
    • /
    • 2023
  • Thermoelectric materials and devices are energy-harvesting devices that can effectively recycle waste heat into electricity. Thermoelectric power generation is widely used in factories, engines, and even in human bodies as they continuously generate heat. However, thermoelectric elements exhibit poor performance and low energy efficiency; research is being conducted to find new materials or improve the thermoelectric performance of existing materials, that is, by ensuring a high figure-of-merit (zT) value. For increasing zT, higher σ (electrical conductivity) and S (Seebeck coefficient) and a lower κ (thermal conductivity) are required. Here, interface engineering by atomic layer deposition (ALD) is used to increase zT of n-type BiTeSe (BTS) thermoelectric powders. ALD of the BTS powders is performed in a rotary-type ALD reactor, and 40 to 100 ALD cycles of ZnO thin films are conducted at 100℃. The physical and chemical properties and thermoelectric performance of the ALD-coated BTS powders and pellets are characterized. It is revealed that electrical conductivity and thermal conductivity are decoupled, and thus, zT of ALD-coated BTS pellets is increased by more than 60% compared to that of the uncoated BTS pellets. This result can be utilized in a novel method for improving the thermoelectric efficiency in materials processing.

이동형 핵종 분석 장치용 CZT 반도체 검출기의 완충전극에 대한 연구 (A Study of Interface Layer on CdZnTe Radiation Sensor for Potable Isotope Identifier)

  • 조윤호;박세환;김용균;하장호
    • 방사선산업학회지
    • /
    • 제5권1호
    • /
    • pp.95-99
    • /
    • 2011
  • The electrical and mechanical properties of electrode for radiation detection are very important. In general, Au electrode and CZT crystal are combined to form ohmic contacts, and the best energy resolution is shown at the Au electrode. The metal contacts are fabricated by electroless deposition method, sputtering deposition method and thermal evaporation method. The electrode fabrication is easy with use of the thermal evaporation method, while an adhesive strength is weak. Thus interface materials such as Ag, Al and Ni were investigated to overcome defects generated by the this method. The thickness of the interface material between the Au electrode and the CZT crystal was 100 Angstroms, the Au electrode with thickness of 400 Angstroms was deposited. The Al+Au electrode is shown that the results of current-voltage and radiation response are similar to results of Au electrode.

Hastelloy X 주조재의 열간 노출에 따른 미세조직 및 인장 특성 변화 (The Effect of Thermal Exposure on the Microstructural Evolution and Tensile Properties in Cast Hastelloy X)

  • 최백규;김인수;도정현;정중은;정인용;홍현욱;조창용
    • 한국주조공학회지
    • /
    • 제37권5호
    • /
    • pp.139-147
    • /
    • 2017
  • Microstructural evolution of cast Hastelloy X during thermal exposure has been investigated. OM, SEM, and TEM microscopy were carried out on the as-cast, the standard heat treated, and the thermally exposed conditions. Tensile tests were also conducted to understand the effect of microstructural evolution on the degradation of tensile properties. Coarse $M_6C$ and fine $M_{23}C_6$ carbides were found in as-cast Hastelloy X with fine carbides on sub-boundary. Some of $M_{23}C_6$ carbide dissolved into the matrix during solution heat treatment and dislocation network formed at the interface between the carbide and the matrix due to the misfit strain. There was no significant microstructural difference between the exposed specimens at $400^{\circ}C$ and the solution heat treated specimen. A large amount of $M_{23}C_6$ carbides precipitated along and near grain boundaries and sub-boundaries after exposure at $650^{\circ}C$. Exposure at $870^{\circ}C$ of the alloy caused precipitation of $M_6C$ and ${\mu}$. The strength increased and the elongation decreased by thermal exposure at $650^{\circ}C$ and $870^{\circ}C$ because carbides interfere with the movement of the dislocation. It was found that the precipitation of carbide gave significant effects on the tensile properties of Hastelloy X.

경계요소법에 의한 이종재료 접합 잔류열응력의 해석 (A Study on the Bonding Residual Thermal Stress Analysis of Dissimilar Materials Using Boundary Element Method)

  • 이원;유영철;정의섭;윤인식
    • 비파괴검사학회지
    • /
    • 제15권4호
    • /
    • pp.540-548
    • /
    • 1996
  • 전자 부품의 일종인 LSI 패키지의 제조 과정에서 절연 방진 방습 등을 목적으로 수지 몰딩이 널리 사용되고 있는데, 냉각과정에서 금속과 수지의 계면에 접합 잔류열응력이 발생하여 파괴의 원인이 되고 있다. 접합 잔류열응력의 측정에는 X선 회절법등이 사용되지만 측정상의 어려움과 계면단 응력특이성에 대한 해석의 곤란함 때문에 적절한 모델링에 따른 수치해석적 연구가 새로이 주목을 받고 있다. 본 연구에서는 Al/Epoxy를 몰딩 접합한 세가지의 대표적인 계면 형상을 선정하여 계면에서의 잔류열응력을 경계요소 수치해석 및 스트레인 게이지를 이용한 실험을 통하여 각각 해석하였다. 수치해석과 실험결과는 정성적으로 잘 일치하였으며, 서브 요소를 사용하므로써 계면단 응력 특이성의 해석 정밀도를 향상시킬 수 있었다. 또한 접합 잔류열응력의 해석결과로부터 수직응력에 의한 계면 박리가 예상되고, 피착체의 두께가 증가할수록 응력 특이성이 강하게 나타남을 확인하였다.

  • PDF

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

일방향 응고된 Co기 초내열합금 FSX-414의 응고속도에 따른 응고조직 및 편석 거동 (Solidification and Segregation Behaviors with Solidification Rate in Co base superalloy, FSX-414)

  • 이현정;이재현;서성문;조창용;권석환;장병문
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.440-446
    • /
    • 2009
  • Co base superalloys have been widely used for the parts of gas turbine due to their excellent strength, thermal fatigue, oxidation resistance and weldability at high temperature. In this study, directional solidifications were carried out at various solidification rates, including $0.5{\sim}300{\mu}m/s$ in the Co base superalloy FSX-414. The cellular interface were formed at a low solidification rate, $1{\mu}m/s$, and the dendritic interface was found at higher solidification rates, $5{\sim}300{\mu}m/s$. As the spacing of dendrite structure decreased, the size and spacing of eutectics decreased. Dendrite arm spacing decreased with increasing solidification rates and temperature gradient. It was interesting to find the $M_{23}C_{6}$ eutectic microstructure formed between $\gamma$ dendrites. Composition analysis showed that Cr and W were segregated severely between the dendrites, which resulted in the formation of Cr-rich $M_{23}C_{6}$ and W-rich MC carbides.

금속 불순물 Ca이 Si 기판의 표면 미세 거칠기에 미치는 영향 (The Effect on the Microroughness of Si Substrate by Metallic Impurity Ca)

  • 최형석;전형탁
    • 한국재료학회지
    • /
    • 제9권5호
    • /
    • pp.491-495
    • /
    • 1999
  • In this study, we focus on Ca contaminant which affects on the roughness Si substrate after thermal process. The initial Si substrates were contaminated intentionally by using a standard Ca solution. The contamination levels of Ca impurity were measured by TXRF and the chemical composition of that was analyzed by AES. Then we gre the thermal oxide to investigate the effect of Ca contaminants. The microroughness of the Si surface, the thermal oxide surface, and the surface after removing the thermal oxide were measured to examine the electrical characteristics. The initial substrates that were contaminated with the standard solution of Ca exhibited the contamination levels of 10\ulcorner~10\ulcorneratoms/$\textrm{cm}^2$ which was measured by TXRF. The Ca contaminants were detected by AES and exhibited the peaks of Ca, SI, C and O.After intentional contamination, the surface microroughness of this initial substrate was increased from $1.5\AA$ to 4$\AA$ as contamination levels became higher. The microroughness of the thermal oxide surfaces of both contaminated and bare Si substrates exhibits similar values. But the microroughness of the contaminated$ Si/SiO_2$ interface was increased as contamination increased. The thermal oxide of contaminated substrate exhibited the small minority carrier diffusion length, low breakdown voltage, and slightly high leakage current.

  • PDF

Evaluation of Degradation Characteristics of Thermal Barrier Coating on Gas Turbine Blades

  • Jung, Yongchan;Kim, Mintae;Lee, Juhyeung;Ahn, Jamin;Kim, Kihong
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권2호
    • /
    • pp.273-278
    • /
    • 2016
  • In order to evaluate the lifespan of high-temperature parts with thermal barrier coating in gas turbines used for power generation, this study was performed on an 80 MW-class gas turbine exceeding 24 k equivalent operating hours. Degradation characteristics were evaluated by analyzing the YSZ (Yttria Stabilized Zirconia) top coat, which serves as the thermal barrier coating layer, the NiCrAlY bond coat, and interface layers. Microstructural analysis of the top, middle, and bottom sections showed that Thermal Growth Oxide (TGO) growth, Cr precipitate growth within the bond coat layer, and formation of diffusion layer occur actively in high-temperature sections. These microstructural changes were consistent with damaged areas of the thermal barrier coating layer observed at the surface of the used blade. The distribution of Cr precipitates within the bond coat layer, in addition to the thickness of TGO, is regarded as a key indicator in the evaluation of degradation characteristics.