• Title/Summary/Keyword: Thermal insulation technique

Search Result 38, Processing Time 0.2 seconds

A Study on the Computation of Hull Temperature Distribution and Boil off Ratio of MRV Type LNG Carrier (MRV형 LNG선의 선체온도분포 및 증발률 산정에 관한 연구)

  • 천병일;김용모;김경근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.986-996
    • /
    • 1994
  • Insulation system of LNG carrier has made important roles such as maintaining a proper Boil off Ratio(BOR) for the cargo and avoiding the excessive low temperature of the adjacent inner hull beyond the permissible limit. At the same time, safety and economy of the LNG transportation by the ship are connected with the performance of the insulation system. Also, thermal insulation system of LNG carrier is one of the most advanced technique with the structure analysis of tank, welding and assembling. In this study a computer program is developed to calculate the hull temperature distribution and BOR, which are important factors in thermal design for the Moss Rosenberg Verft spherical tank type LNG carrier. Detailed results for hhull temperature distribution close to LNG tank, BOR and the thickness effect of insulation material are reported in this paper in the range of standare design sea condition.

Pressure Contact Interconnection for High Reliability Medium Power Integrated Power Electronic Modules

  • Yang, Xu;Chen, Wenjie;He, Xiaoyu;Zeng, Xiangjun;Wang, Zhaoan
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.544-552
    • /
    • 2009
  • This paper presents a novel spring pressure contact interconnect technique for medium power integrated power electronics modules (IPEMs). The key technology of this interconnection is a spring which is made from Be-Cu alloy. By means of the string pressure contact, sufficient press-contact force and good electrical interconnection can be achieved. Another important advantage is that the spring exhibits excellent performance in enduring thermo-mechanical stress. In terms of manufacture procedure, it is also comparatively simple. A 4 kW half-bridge power inverter module is fabricated to demonstrate the performance of the proposed pressure contact technique. Electrical, thermal and mechanical test results of the packaged device are reported. The results of both the simulation and experiment have proven that a good performance can be achieved by the proposed pressure contact technique for the medium power IPEMs.

A Study of Thermal insulation method using extruded and expanded Poly-ethylene panel contacted to the bathroom inner wall facing on the outside (외기와 면하는 욕실 내측벽에 압출 발포폴리스티렌 패널을 사용한 단열시공기술에 관한 연구)

  • Lee Jong-Jin;Oh Chang-Won;Yeo Sung-Yi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.11-16
    • /
    • 2005
  • This study is for the insulation construction of inner wall in a bathroom facing on the outside in the housings. This new dry construction method can be constructed by a dry panel which is bonded tiles on the extruded and expanded poly-ethylene panel in stead of the existing wet construction method. Compared to the existing method, this panel is light movably and is constructed simply. These representative construction merits are getting wide span in a bath due to reducing wall thickness and saving construction period.

  • PDF

An Experimental Study on Quality Management of Strength in High Strength Mass Concrete Structure Using Thermal Insulation Material (보온재를 사용한 고강도 매스 콘크리트의 품질관리에 관한 연구)

  • Cho, Kyu-Hyun;Back, Min-Soo;Kim, Sung-Sik;Lim, Nam-Gi;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.113-118
    • /
    • 2004
  • This study is a basic experiment on quality management of the compression strength of high strength concrete, aiming. at quality management of high strength mass concrete by giving the temperature hysteresis of the mass test pieces to managerial test pieces. Different from ordinary concrete, high strength concrete generally shows the temperature high rising caused by hydration heat inside the concrete. It is known that, in mass concrete, thermal stress occurs due to the difference in temperature between the inside and the outside, which causes a significant difference in compression strength between structure beams and managerial test pieces. It is also reported that there is a large difference between the compression strength of cylindrical managerial test pieces of standard underwater curing and the strength of structure beam concrete. Thus, this study made concrete test pieces in an optimal mix ratio for each strength level, and also created thermal insulation curing box and managerial test pieces. Then it carried out comparative analysis in relation to core strength and suggested equipment and a technique that can control the strength of high strength concrete mass more conveniently and accurately.

Preparation and characterization of nanoporous monolith with high thermal insulation performance (나노 기공성 단열 실리카 모노리스 제조 및 특성 연구)

  • Choi, Hyun-Muk;Kim, Seong-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • In this study, we synthesized two different silica monoliths by using sol-gel, solvent exchange, surface modification, ambient pressure drying processes, and surfactant-based templating technique followed by calcination process. All of the prepared two silica monoliths showed crack-free appearance with fairly good transparency, and furthermore were confirmed to have extremely high porosity, specific surface area, and mean pore size below 30 nm. The silica aerogel sample exhibited finer and more homogeneous nano-sized pore structure due to spring back effect caused by surface modification, which resulted in better thermal insulation performance. Based on measured thermal conductivities and theoretical relationship, multi-layered glass window system in which silica monolith prepared in this study was inserted as a middle layer was revealed to have superior thermal insulation performance compared to conventional air-inserted glass window system.

Combined seismic and energy upgrading of existing reinforced concrete buildings using TRM jacketing and thermal insulation

  • Gkournelos, Panagiotis D.;Bournas, Dionysios A.;Triantafillou, Thanasis C.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.625-639
    • /
    • 2019
  • The concept of the combined seismic and energy retrofitting of existing reinforced concrete (RC) buildings was examined in this paper through a number of case studies conducted on model buildings (simulating buildings of the '60s-'80s in southern Europe) constructed according to outdated design standards. Specifically, seismic and thermal analyses have been conducted prior to and after the application of selected retrofitting schemes, in order to quantify the positive effect that retrofitting could provide to RC buildings both in terms of their structural and energy performance. Advanced materials, namely the textile reinforced mortars (TRM), were used for providing seismic retrofitting by means of jacketing of masonry infills in RC frames. Moreover, following the application of the TRM jackets, thermal insulation materials were simultaneously provided to the RC building envelope, exploiting the fresh mortar used to bind the TRM jackets. In addition to the externally applied insulation material, all the fenestration elements (windows and doors) were replaced with new high energy efficiency ones. Afterwards, an economic measure, namely the expected annual loss (EAL) was used to evaluate the efficiency of each retrofitting method, but also to assess whether the combined seismic and energy retrofitting is economically feasible. From the results of this preliminary study, it was concluded that the selected seismic retrofitting technique can indeed enhance significantly the structural behaviour of an existing RC building and lower its EAL related to earthquake risks. Finally, it was found that the combined seismic and energy upgrading is economically more efficient than a sole energy or seismic retrofitting scenario for seismic areas of south Europe.

Nondestructive evaluation of wall thinning covered with insulation using pulsed eddy current (펄스와전류를 이용한 보온재 비해체식 배관감육 평가기술)

  • Park, Duck-Gun;Babu, M.K.;Lee, Duk-Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Local wall thinning is a point of concern in almost all steel structures such as pipe lines covered with a thermal insulator made up of materials with low thermal conductivity(fiberglass or mineral wool); hence, Non Destructive Technique(NDT) methods that are capable of detecting the wall thinning and defects without removing the insulation are necessary. In this study we developed a Pulsed Eddy Current(PEC) system to detect the wall thinning of Ferro magnetic steel pipes covered with fiber glass thermal insulator and shielded with Aluminum plate. The developed system is capable of detecting the wall thickness change through an insulation of thickness 10cm and 0.4mm aluminum shielding. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and coil sensor were used as a detecting element. In both cases, the results show a very good change corresponding to the thickness change of the test specimen. During these experiments a carbon steel tube of diameter 210mm and a length of 620mm, which is covered with insulator of 95mm thickness was used. To simulate the wall thinning, the thickness of the tube is changed for a specified length such as 2.5mm, 5mm and 8 mm from the inner surface of the tube. A 0.4mm thick Aluminum plate was covered on the Test specimen to simulate the shielding of the insulated pipelines. For both hall sensor and coil detection methods Fast Fourier transform(FFT) was calculated using window approach and the results for the test specimen without Aluminum shielding were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra. The PEC system can detect the wall thinning under the 95 mm thickness insulation and 0.4 mm Al shielding, and the output signal showed linear relation with tube wall thickness.

Deformational characteristics of a high-vacuum insulation panel

  • Shu, Hung-Shan;Wang, Yang-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.245-262
    • /
    • 2000
  • The objective of this study is to analyze the deformational characteristics of a high-vacuum insulation panel that is evacuated to eliminate significant gas-phase conductance through its thickness. The panel is composed of a metal envelope and low thermal conductance spacers. The problem is very challenging because several nonlinearities are involved concurrently. Not only are various finite element models such as triangular, rectangular, beam and circular plate models used to simulate the panel, but also several finite element programs are used to solve the problem based on the characteristics of the finite element model. The numerical results indicate that the effect of the diameter of the spacer on the vertical deformation of the plate panel is negligibly small. The parameter that mainly influences the maximum sag is the spacing between the spacers. The maximum vertical deformation of the panel can be predicted for a practical range of the spacing between the spacers and the thickness of the plate. Compared with the numerical results obtained by the finite element models and the experimental tests, they have a good agreement. The results are represented in both tabular and graphical forms. In order to make the results useful, a curve fitting technique has been applied to predict the maximum deformation of the panel with various parameters. Moreover, the panel was suggested to be a "smart" structure based on thermal effect.

Lifetime Prediction of PTFE Electrical Insulation Material Using Thermal Analysis Technique (열분석장치를 적용한 PTFE 전기절연재의 수명 예측 연구)

  • Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.296-297
    • /
    • 2011
  • A series of thermogravimetric analysis tests were conducted to predict the lifetime of the PTFE electrical insulation material. The prepared PTFE samples were heated from $25^{\circ}C$ to $700^{\circ}C$ at different heating rates. The kinetic energy of the PTFE was calculated from the logarithmic heating rate versus reciprocal temperature curves at constant conversion levels. Also, the lifetime of the PTFE for a given operating temperature can be predicted using the relationship between the activation energy and the estimated lifetime proposed by Toop.

  • PDF

Analysis of Produced By-products Due to Oil/Paper Degradation on Power Transformers (전력용 변압기의 열화에 의해 생성된 부산물의 분석)

  • Kim, Jae-Hoon;Han, Sang-Ok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.9
    • /
    • pp.1561-1565
    • /
    • 2007
  • According to thermal degradation on power transformers, it is known that electrical, mechanical and chemical characteristics for power transformer's oil-paper are changed. In the chemical property, especially, when the kraft paper is aged, the cellulose polymer chains break down into shorter lengths. It causes decrease in both tensile strength and degree of polymerization of paper insulation. Also the paper breakdown is accompanied by an increase in the content of various furanic compounds within the dielectric liquid. It is known that furanic components in transformer oil come only from the decomposition of insulating paper rather than from the oil itself. Therefore the analysis of furanic degradation products provides a complementary technique to dissolved gas analysis for monitoring transformers when we evaluate the aging of insulating paper by the total concentration of carbon monoxide and carbon dioxide dissolved in oil only. Recently, the analysis of furanic compounds by high performance liquid chromatography(HPLC) using IEC 61198 method for estimating degradation of paper insulation in power transformers has been used more conveniently for assessment of oil-paper. It is know that the main products which is produced by aging are 2-furfuryl alcohol, 2-furaldehyde(furfural), 2-furoic acid, 2-acetylfuran, 5-methyl-2-furaldehyde, and 5-hydroxymethyl-2-furaldehyde. For investigating the accelerated aging process of oil-paper samples we manufactured accelerating aging equipment and we estimated variation of insulations at $140^{\circ}C$ temp. during 500 hours. Typical transformer proportions of copper, silicon steel and iron have been added to oil-paper insulation during the aging process. The oil-paper insulation samples have been measured at intervals of 100 hours. Finally we have analyzed that 2-furoic acid and 2-acetylfuran products of furanic compounds were detected by HPLC, and their concentrations were increased with accelerated aging time.