• Title/Summary/Keyword: Thermal insulation material

Search Result 389, Processing Time 0.026 seconds

The Electrical Properties of High Voltage Silicone Rubber (고전압용 실리콘고무의 전기적 특성)

  • 김성필;송정우;이종필;이수원;김왕곤;홍진웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.779-782
    • /
    • 2000
  • Silicone rubbers are first silicone polymers and has named silicone from existence of Si-O bond similar to Keton. Silicon in organic compound has been called silicone, and linear or network polymers. Silicone rubbers have been used as an power insulator because they are well weather proof, ozone proof and have excellent electric characteristics, thermal stability, cold resistance and low surface energy. Especially, it is known that they have very excellent characteristics at 200[$^{\circ}C$]. For this study, we made silicone rubbers as specimens and we measured dielectric loss tangent due to applied voltage at temperature range 25[$^{\circ}C$] to 180[$^{\circ}C$] and frequency range 20[Hz] to 1${\times}$10$\^$6/[Hz] to examine dielectric properties. We measured dielectric loss tangent to study the insulation performance of silicone rubbers.

  • PDF

An Experimental Study on Thermal Property of Porous Concrete Containing Bottom Ash (바텀애시를 활용하는 다공성 콘크리트의 열전도 특성에 관한 실험 연구)

  • Jeong, Seung-Tae;Kim, Bum-Soo;Park, Ji-Hun;Yang, In-Hwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.625-632
    • /
    • 2021
  • In this paper, the applicability of bottom ash to insulation concrete was investigated to increase the utilization of bottom ash. Bottom ash was used as the aggregates in porous concrete and extensive experiments were conducted to investigate the characteristics of porous concrete using two types of bottom ash aggregates. The water-binder ratios of 0.25 and 0.35 were chosen and concrete specimens was produced with the compaction of 0.5, 1.5, and 3.0MPa to analyze the material properties at different compaction conditions. After concrete specimens were cured for 28 days at water tanks, unit weight, total void ratio, and thermal conductivity were measured. Based on the measured experimental results, the relationships between the unit weight, total void ratio, and thermal conductivity of porous concrete containing bottom ash was presented.

Experimental study on the cryogenic thermal storage unit (TSU) below -70 ℃

  • Byeongchang Byeon;Kyoung Joong Kim;Sangkwon Jeong;Dong min Kim;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Seong Woo Lee;Keun Tae Lee
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.20-24
    • /
    • 2024
  • Over the past four years, as the COVID-19 pandemic has struck the world, cold chain of COVID-19 vaccination has become a hot topic. In order to overcome the pandemic situation, it is necessary to establish a cold chain that maintains a low-temperature environment below approximately 203K (-70℃), which is the appropriate storage temperature for vaccines, from vaccine suppliers to local hospitals. Usually, cryocoolers are used to maintain low temperatures, but it is difficult for small-scale local distribution to have cryocooler due to budget and power supply issues. Accordingly, in this paper, a cryogenic TSU (Thermal storage unit) system for vaccination cold chain is designed that can maintain low temperatures below -70℃C for a long time without using a cryocooler. The performance of the TSU system according to the energy storage material for using as TSU is experimentally evaluated. In the experiments, four types of cold storage materials were used: 20% DMSO aqueous solution, 30% DMSO aqueous solution, paraffin wax, and tofu. Prior to the experiment, the specific heat of the cold storage materials at low temperature were measured. Through this, the thermal diffusivity of the materials was calculated, and paraffin wax had the lowest value. As a result of the TSU system's low-temperature maintenance test, paraffin wax showed the best low-temperature maintenance performance. And it recorded a low-temperature maintenance time that was about 24% longer than other materials. As a result of analyzing the temperature trend by location within the TSU system, it was observed that heat intrusion from the outside was not well transmitted to the low temperature area due to the low thermal conductivity of paraffin wax. Therefore, in the TSU system for vaccine storage, it was experimentally verified that the lower the thermal diffusivity of the cold storage material, the better low temperature maintenance performance.

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.

Analysis of Heat Transfer Characteristics by Materials in Closed Conditions Using Acrylic Hemisphere (I): Comparison of Interior Finishing Materials (아크릴 반구를 이용한 밀폐 조건에 따른 재료별 열 이동 특성 분석(I): 실내마감재 종류에 따른 비교)

  • YANG, Seung Min;LEE, Hyun Jae;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.217-230
    • /
    • 2020
  • Global warming has increased interest in reducing greenhouse gas emissions. And a policy has effort to reduce energy consumption as a greenhouse gas reduction plan. In Korea, 25% of total energy is consumed in the building sector. In order to reduce energy consumption of buildings, it is possible to expand the utilization of wood as a structural material or thermal insulation materials with low thermal conductivity. It is also reported that when used as an interior finishing material, the energy consumption of the building is reduced by up to 7% by insulation performance. In this study, the heat transfer characteristics and the heat capacity were compared according to the three type of finishing materials(cement, paulownia coreana, medium density fiberboard) normally used as indoor finish materials. Through this study, most of the heat transfer volumes are transferred in the form of radiant heat, and the result was derived from the highest amount of energy and heat transfer in the use of paulownia coreana. When indoor finishing materials are used as wood, it is deemed that energy efficiency inside the building will be improved.

Hydration and Insulation Characteristics of a Ground Granulated Blast Furnace Slag Based Non-Sintered Cement Using Circulating Fluidized Bed Combustion Ash as a Activator (순환유동층 애시를 자극제로 사용한 고로슬래그 미분말 기반 비소성 시멘트의 수화 및 단열 특성)

  • Lee, Seung-Heun;Lee, Gang-Hyuk;Yoo, Dong-Woo;Ha, Ju-Hyung;Cho, Yun-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.245-252
    • /
    • 2015
  • As people have more interest in environment-friendly structures recently, many researchers are actively researching non-sintered cement in Korea and other countries. Non-sintered cement shows various characteristics of its reaction products and hardeners, depending on the kind of alkali activators. Thus, this study manufactures ground granulated blast furnace slag based non-sintered cement binder by using circulating fluidized bed combustion ash, which is a kind of industrial byproduct, as a stimulant, and investigated its hardening characteristics and hydration, depending on the rate of circulating fluidized bed combustion ash. Besides, this study investigated its insulation property according to the weight lightening of non-sintered cement. As a result, ettringite and C-S-H were mainly formed in the hydration, and it was possible to manufacture a non-sintered cement hardener over 50 MPa. Lastly, it was possible to manufacture a non-sintered cement hardener in a thermal conductivity level of $0.127W/m{\cdot}K$ when the compressive strength was 10 MPa for weight lightening.

Physical Properties of Environment-friendly Insulating Composite Materials Using Natural Cellulose as a Core Material (천연섬유질을 심재로 사용한 친환경 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Korean Chemical Engineering Research
    • /
    • v.49 no.1
    • /
    • pp.120-127
    • /
    • 2011
  • For the development of the environment-friendly insulating composite materials, natural cellulose (wood chip and sawdust) was used as a core material and activated Hwangtoh was used as a binder. Various specimens were prepared with the water/binder ratio and natural cellulose/binder ratio. The physical properties of these specimens were then investigated through compressive and flexural strength test, absorption test, hot water resistance test, thermal conductivity, measurement of pore distribution and observation of micro-structures using scanning electron microscope (SEM). Results showed that the absorption ratio increased with the increase of natural cellulose/binder ratio but decreased remarkably with the increase of polymer/binder ratio. The compressive and flexural strength development varied appreciably with the increase of water/binder ratio and natural cellulose/binder ratio. On the other hand, thermal conductivity decreased with the increase of natural cellulose/binder ratio and polymer/binder ratio. Through SEM, it was found that activated Hwangtoh that reacted with water formed a hydrate crystal leading to the compact structure and the total pore volume of the specimen using activated Hwangtoh was smaller than that of the non-activated Hwangtoh.

Experimental Analysis on the Performance of a Solar Powered Water Pump (태양열 물펌프의 실험적 성능분석)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;La W. J.;Lee Y. K.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.521-530
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which electrical power is not available. The average solar radiation power is $3.488\;kWh/(m^2{\cdot}day)$ in Korea. In this study, the experimental system of the water pump driven by the radiation energy were designed, assembled, tested and analyzed fur realizing the solar powered water pump. Energy conversion ken radiation energy to mechanical energy by using n-pentane as operating material was done and the water pumping cycles were able to be continued. The quantity of the water pumped per cycle ranged from 2 L to 10 L depending on the level of the valve open area far the vapour supply. The average quantity was about 4,366 cc. The thermal efficiency was about $0.018\%$. The pressure level of the n-pentane vapour in flash tank was about $110\~150\;kPa$ and that in the water tank was $93\~130\;kPa$. The pressure in the condenser during cycles was maintained as about 70 kPa. The condensation of the n-pentane vapour in the water tank was increased with the cycles even though the internal and external insulation were done. Air tank performance was better with increasing of the water piston displacement and the water could be pumped with the water piston displacement becoming higher than 6,500 cc.

Analysis of Heat Transfer Characteristics by Material Based on Closed Conditions Using Acrylic Hemispheres (II): Comparison by Type of Building Structural Materials (아크릴 반구를 이용한 밀폐조건에 따른 재료별 열 이동특성 분석(II): 건축구조재 종류에 따른 비교)

  • YANG, Seung Min;KWON, Jun Hyuck;KIM, Phil Lip;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.710-721
    • /
    • 2020
  • This study used a building model made up of cement, brick, and wood to measure temperature and relative humidity for 3 days in a closed environment with a diameter of 900 mm, and performed a comparative analysis of the effect of types of building materials on the indoor temperature environment and heat transfer characteristics. The water installed inside the building model represented the person in the room and was used to assess how the environment effects the person. Wooden building model showed the lowest heat loss due to the higher thermal insulation properties than cement and brick buildings. The thermal comfort of each building model was calculated using temperature and relative humidity, and the wooden building model created a more pleasant environment than the cement and brick building models.

Physical Properties of Insulating Composite Materials Using Natural Cellulose and Porous Ceramic Balls as a Core Materials (천연섬유질과 다공성 세라믹볼을 심재로 사용한 복합단열재의 물성)

  • Hwang, Eui-Hwan;Cho, Soung-Jun;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.501-507
    • /
    • 2011
  • To develop environmental-friendly insulating composite materials, natural cellulose and porous ceramic balls were used as core materials and activated Hwangtoh was used as a binder. Various specimens were prepared with different water/binder ratios and core material/binder ratios. The physical properties of these specimens were then investigated through compressive strengths, flexural strengths, absorption test, hot water resistance test, pore analysis, thermal conductivity, and observation of micro-structures using scanning electron microscope. Results showed that the maximum compressive strength varied appreciably with the water/binder ratios and core material/binder ratios, but the flexural strength increased with the core material/binder ratios regardless of water/binder ratios. The compressive strength and the flexural strength measured after the hot water resistance test decreased remarkably compared to those measured before test. The pore analysis measured after the hot water resistance test showed that total pore volume, porosity and average pore diameter decreased, while bulk density increased by the acceleration of hydration reaction of binder in the hot water. The thermal conductivity decreased gradually with an increase of core material/binder ratios. It can be evaluated that the composite insulation materials having good insulating properties and mechanical strengths can be used in the field.