• 제목/요약/키워드: Thermal indoor environment Thermal comfort Index

검색결과 18건 처리시간 0.02초

공동주택의 냉방시 실내온열환경 평가 연구 (Evaluation of Indoor Thermal Environment for Cooling in Apartment House)

  • 김난행;안병욱
    • 한국주거학회논문집
    • /
    • 제14권3호
    • /
    • pp.1-8
    • /
    • 2003
  • It is not sufficient to control the indoor thermal environment using only one or two parameters by itself as human response for the control of indoor thermal environment. So a proper environmental thermal index is required for the control of indoor thermal environment effectively. In this study, the physical environment was measured and analysed and the skin temperature of the subjects and their response were investigated to evaluate the optimum thermal comfort range for cooling season in an apartment house. As a result, the optimal temperature was 26.1$^{\circ}C$ and the temperature ranges which more than 80% responded as satisfactory were 24.1~28.$0^{\circ}C$, respectively. As the OT had most significant interrelation with the PMV, it is desirable to use the OT in evaluating the thermal environment during cooling. Also, the comfort range was concluded between OT 25.5~27.3$^{\circ}C$ by appointing the PMV of -0.5~0.5 as the optimum comfort condition. In addition, the Human responses were compared with calculated PMV, OT and MRT and the relationships are suggested in order to utilize to control indoor thermal environment.

안면 피부온도를 활용한 PMV 지표 기반 쾌적환경 조성의 타당성 연구 (The Validation Study of Shaping Comfortable Environments Based on the PMV Index Using Facial Skin Temperature)

  • 김보성;민윤기;신에스더;김진호
    • 감성과학
    • /
    • 제16권3호
    • /
    • pp.311-318
    • /
    • 2013
  • 본 연구는 인간의 생리적 지표 중 하나인 안면 피부온도를 활용하여 PMV 지표 값에 기반하여 조성된 쾌적/불쾌 실내 환경을 적절하게 구분할 수 있는지 그 타당성을 살펴보고자 하였다. 이를 위해 쾌적 실내 환경에 해당되는 PMV 지표 값을 기준으로 물리적 환경을 쾌적 실내 환경과 불쾌한 실내 환경으로 각각 구분하고, 구분된 환경내에서 재실자의 안면 피부온도를 측정하였다. 그 결과, PMV 지표 값으로 구분된 쾌적 실내 환경과 불쾌한 실내 환경에서의 재실자의 안면 피부온도가 서로 차이를 보이는 것으로 나타났다. 이는 안면 피부온도가 PMV 지표에 기반한 쾌적한 실내 환경 조성에 있어 활용될 수 있음을 시사한다. 그러나 쾌적한 실내 환경에 비해 불쾌한 실내 환경에서 안면 피부온도가 낮게 나타나는 결과를 통해 오히려 PMV 지표 값에 기반을 두고 조성되는 쾌적/불쾌환경이 타당하지 않을 수 있음도 시사한다.

  • PDF

공동주택의 하절기 개구부 밀폐 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석 (Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the ToP Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Closed -)

  • 최동호
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.45-53
    • /
    • 2004
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample houses. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained the brief results as follows. Indoor air temperature at the top floor unit is $1.2\sim2.2^{\circ}C$ higher than that of middle floor unit. The evaluation of the indoor thermal comfort index at each sample rooms reveals notable thermal differences between the two units. Top floor units need more cooling load during the summertime compared to middle floor units. Therefore, solutions to reduce solar Heat gain at top floor units to be considered.

PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션 (An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index)

  • 성남철;윤동원
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.19-25
    • /
    • 2010
  • 최근 에너지 절약을 화두로 건물에서의 에너지 절약기술들이 크게 요구되어 지는 반면 재실자의 온열쾌적환경은 비교적 비중 있게 다루어지지 않고 있다. 실내공간의 쾌적성은 재실자의 만족감과 더불어 생산성을 향상시키는 등의 역할을 하며, 최근 삶의 질 향상 등에 따라 그 필요성이 크게 요구되고 있는 실정이다. 따라서 본 연구에서는 공동주택을 대상으로 겨울철 난방 시 쾌적지표를 통한 실내 온열환경 제어의 타당성을 검토하고자 시뮬레이션을 수행하였으며, 주거건물에서의 일상적인 실내온도와 에너지 절약 설계기준에서 제시한 실내 설정온도, 그리고 쾌적지표를 설정으로 한 각 제어조건의 온열환경과 에너지 소비량을 비교 분석 및 검토하였다. 본 연구결과에 따르면, 쾌적지표인 PMV로 실내환경을 제어했을 때 에너지 절약설계 기준인 $22^{\circ}C$로 실내온도를 설정하였을 때보다 에너지 소비량은 29% 증가하지만 주거용 건물에서 일반적으로 유지되는 실내온도인 $24^{\circ}C$ 보다는 에너지소비량은 11% 정도 감소하며, 온열쾌적감도 각 제어조건 중 가장 우수하게 나타났다. 따라서 여러 가지 제어변수들을 통한 연구가 지속된다면 주거용 건물에서도 쾌적지표를 활용한 실내 공간의 제어방법은 건물의 에너지를 절약하고 실내 환경의 쾌적성을 증대시키는 주요기술이 될 수 있을 것으로 기대된다.

Unsteady-state CFD 시뮬레이션을 이용한 여름철 공동주택 외부공간의 온열환경 및 쾌적성 평가 (Evaluation of the Thermal Environment and Comfort in Apartment complex using Unsteady-state CFD simulation)

  • 전미영;이승재;김지영;이승복;김태연
    • KIEAE Journal
    • /
    • 제10권4호
    • /
    • pp.67-73
    • /
    • 2010
  • As more and more people desire to live in an apartment complex with a comfortable outdoor space, many construction company became interested in outdoor design. In order to increase the use of outdoor space and create the most pleasant environment, outdoor thermal environment and comfort should be evaluated quantitatively from the design stage. This study utilized ENVI-met 3.1 model to analyze outdoor thermal environment in apartment complex, and evaluated outdoor thermal comfort in 6 points of apartment complex. The physiologically equivalent temperature(PET) was employed as a outdoor thermal index. Playground B had a poor thermal environment with the maximum PET $43^{\circ}C$ (Very hot). Because shading by building and tree didn't affect outdoor thermal environment of playground B. To design comfortable outdoor space from the view point of thermal environment, the factors influencing Mean radiant temperature(MRT) and wind speed should be considered in design stage. Since it is difficult to control outdoor thermal environment compared with indoor environment, we should take into account an assessment for outdoor thermal environment and comfort in outdoor design stage.

Environmental Monitoring Using Comfort Sensing System

  • Na, Dae-Suk;Kang, Jeong-Ho;Park, Se-Kwang
    • 센서학회지
    • /
    • 제12권1호
    • /
    • pp.24-33
    • /
    • 2003
  • This research is about a comfort sensing system for human environmental monitoring using a one-bodied humidity and temperature sensor and an air flow sensor. The thermal comfort that a human being feels in indoor environment has been known to be influenced mostly by six parameters, i.e. air temperature, radiation, air flow, humidity, activity level and clothing thermal resistance. Considering an environmental monitoring, we have designed and fabricated a one-bodied humidity and temperature sensor and an air flow sensor that detect air relative humidity, temperature and air flow in human environment using surface micromachining technologies. Micro-controller calculates a PMV (predicted mean vote) and CSV (comfort sensing vote) with sensing signals and display a PMV on LCD (liquid crystal display) for human comfort on indoor climate. Our work has demonstrated that a comfort sensing system can provide an effective means of measuring and monitoring the indoor comfort sensing index of a human being. Experimental results with simulated environment clearly suggest that our comfort sensing system can be used in many applications such as air conditioning system, feedback controlling in automobile, home and hospital etc..

실내 온열환경 제어를 위한 PMV 센서의 개발 및 적용성 평가연구 (Development and Evaluation of a PMV Sensor for the Control of Indoor Thermal Environment)

  • 윤동원;강효석;안병욱
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.870-878
    • /
    • 2003
  • The maintenance of thermal equilibrium between the human body and its environment is one of the primary requirements for health, wellbeing and comfort. For the effective control of indoor thermal environment, thermostat or humidistat is used. But, it is not sufficient to control the indoor thermal environment using only one or two parameters as human response for the indoor comfortable environment. So an environmental thermal index is required for the control of indoor thermal environment effectively. In this study, a PMV sensor has been developed which has integrated from various kinds of individual sensors for temperature, humidity, air velocity, radiant temperature. After applying the PMV and PPD equation, it is possible to monitor the indoor thermal environment with the sensor system, which is adopted to the circuit for optimization according to the human response with the metabolic rate and activities. The measurement was carried out to verify the performance of the integrated sensor system in comparison with existing measurement system, the PMV meter. As a result, the possibility of applying the PMV sensor to control the indoor thermal environment simultaneously was examined.

공동주택의 하절기 자연환기 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석 (Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the Top Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Opened -)

  • 최동호
    • 한국태양에너지학회 논문집
    • /
    • 제25권1호
    • /
    • pp.45-55
    • /
    • 2005
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature, globe temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample units on the condition that all the openings of the units are opened. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained three brief results as follows. Indoor air temperature difference between the two sample units shifts a day. Indoor air temperature at the top floor unit is $0{\sim}1.8^{\circ}C$ higher than that of the middle floor unit from 12:00 p.m. to 12:00 a.m. and $0{\sim}2.8^{\circ}C$ lower from 12:00 a.m. to 12:00 p.m. The evaluation of the indoor thermal comfort index and the globe temperature shows similar results as the indoor air temperature measuring. Results of this experiment verified the actual existence of indoor air temperature difference between the top floor unit and the middle one and this difference comes from the heat storage of the roof.

태양일사가 실내공간의 열적 쾌적성과 환기성능에 미치는 영향에 관한 연구 (The study on the effect of the solar radiation on thermal comfort and ventilation performance in room space)

  • 연성현;이효준;리광훈
    • 한국가시화정보학회지
    • /
    • 제14권1호
    • /
    • pp.19-26
    • /
    • 2016
  • Modern people spend much time at indoor space. So, People want to make better indoor air condition. But the facade of building is made of glass to be seen urbanely, the effect of solar radiation makes indoor environment worse. This study designs an open space affected by solar radiation with 4-way cassette air-conditioner. Using numerical simulation, this paper investigates thermal comfort and ventilation performance with discharge angles $30^{\circ}$ and $45^{\circ}$. To study thermal comfort, this paper studies distribution of velocity, temperature and effective draft temperature. Also, this paper introduces concept of air age to study ventilation performance. The flow influenced by solar radiation determines thermal comfort and ventilation performance in room space. This study shows that discharge angle of 45 degree has better thermal comfort and ventilation performance than that of 30 degree.

온도, 습도, 기류를 이용한 하절기 VRF 시스템의 쾌적 제어 알고리즘 개발 (Development of Comfort Control Logic for VRF System in Summer Season by using 3 Environment Factors(Temperature, Humidity and Air flow))

  • 김종민;최재붕;이상원;조두호;이필호;김영진
    • 설비공학논문집
    • /
    • 제23권9호
    • /
    • pp.610-619
    • /
    • 2011
  • This paper investigates the simplified comfort index and control logic for VRF (Variable Refrigerant Flow) system by using 3 environmental factors such as temperature, humidity and air flow. Indoor test under thermal load was conducted to explore relationship of each environment factors that is related to simplified comfort index. Simplified comfort function that has 3 environmental variables was proposed based on survey results. Each factor is measured and comfort preference was surveyed by more than 30 subjects in the indoor comfort test. Moreover, control logic for VRF system was developed and then simulated by using thermal load calculation method and verified with test. The proposed comfort function was in good agreement with survey results, and also verification test trend of comfort change and maintenance are quite similar with survey. Furthermore, through the additional test data analysis some differences of comfort according to position of people staying in the test room were additionally investigated by air flow. People being under an exit of air in the indoor air-conditioner feel more comfortable condition and speed of response to comfort change is relatively fast.