• 제목/요약/키워드: Thermal formation

검색결과 1,860건 처리시간 0.028초

The Formation and Phase Stability of Cobalt-aluminide(CoAl) Thin Films on GaAs

  • Ko, Dae-Hong;Robert Sinclair
    • The Korean Journal of Ceramics
    • /
    • 제4권1호
    • /
    • pp.43-46
    • /
    • 1998
  • We have investigated the formation and thermal stability of cobalt aluminide(CoAl) thin films on GaAs. In order to obtain cobalt-aluminide thin films, we deposited a multilayer of Co/Al on GaAs, and subsequently annealed the samples at 80$0^{\circ}C$ for 30 min. After annealing, single-phase cobalt aluminide was produced showing a flat and uniform interface with GaAs. which indicates that cobalt aluminide (CoAl) is thermally stable with GaAs. In addition, the adherence and mechanical properties of the as-deposited, and annealed Co/Al multilayer structure on GaAs are compatible with those required for device fabrication processes. The electrical property of the CoAl/GaAs contact shows rectifying characteristics, indicating that the diodes were usable as rectifying gate electrodes.

  • PDF

Preparation of needle coke from petroleum by-products

  • Halim, Humala Paulus;Im, Ji Sun;Lee, Chul Wee
    • Carbon letters
    • /
    • 제14권3호
    • /
    • pp.152-161
    • /
    • 2013
  • Needle coke is an important material for graphite electrodes. Delayed coking is used to produce needle coke. Producing good quality needle coke is not simple because it is a multi-parameter controlled process. Apart from that, it is important to understand the mechanism responsible for the delayed coking process, which involves mesophase formation and uniaxial rearrangement. Temperature and pressure need to be optimized for the different substances in every feedstock. Saturate hydrocarbon, aromatic, resin and asphaltene compounds are the main components in the delayed coking process for a low Coefficient Thermal Expansion value. In addition, heteroatoms, such as sulphur, oxygen, nitrogen and metal impurities, must be considered for a better graphitization process that prevents the puffing effect and produces better mesophase formation.

Melt Spinning된 Cu-Al-Ni-X계 형상기억합금 리본의 고온시효 (Aging of Melt Spun Ribbons in Cu-Based Shape Memory Alloys at High Temperature)

  • 최영택
    • 한국분말재료학회지
    • /
    • 제2권3호
    • /
    • pp.208-215
    • /
    • 1995
  • The aging effects on the characteristics of the melt spun Cu based shape memory alloys have been investigated by the microhardness test, X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. After aged for specific times, hardness of the ribbons began to increase and shape memory capacity diminished. At the initial stage of aging the austenitic transformation temperatures increased gradually, but at last became nearly constant: That is, the aging deteriorated the thermal stability. The increase in hardness was due to the formation of the $\gamma_2$ precipitates. The loss in the shape memory capacity was due to the decrement of solute atoms in the matrix by the formation of the $\gamma_2$ precipitates. In this study, it was confirmed that Mn is an effective element for Improving the thermal stability.

  • PDF

RTA를 이용한 Cobalt Silicide의 형성 및 Growth Rate d에 관한 연구 ("A Study on the formation of Cobalt Silicide and its Growth Rate by Rapid Thermal Annealing(RTA)")

  • 강유석;김효완;황호정
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.387-390
    • /
    • 1988
  • The increases in the packing density and the resulting shrinkage of silicon integrated circuit dimensions led to the investigation and successful of the deposited silicide layers as the gate and interconnection and contact metallization. In this paper evaporated Co films on n-Si have been rapid thermal annealed in $N_2$ambient at temperature of $400^{\circ}C-1000^{\circ}C$. The Co silicide formation is characterized by sheet resistance (4PP). Also, silicide growth rate and its reproductivity has been examined by SEM.

  • PDF

潤滑再生油의 酸化安定性能 (第2報). 抗酸化性 物質의 生成 (Oxidation Stability of Regenerated Lubricating Oils (II) Formation of anti-Oxidant Materials)

  • 나윤호
    • 대한화학회지
    • /
    • 제19권1호
    • /
    • pp.50-52
    • /
    • 1975
  • 潤滑再生油의 酸化安定性이 向上되는 機構를 알기 爲하여 第一報에서 만든 試料와 輕油을 混合한 것과 輕油에다 添加劑(알킬벤젠과 페놀형물질)를 混合한 試料의 酸化安定性能 試驗을 하여 內然機關에서 使用한 潤滑廢油의 再生油가 酸化安定性이 向上되었음을 알았고 使用途中 芳香族化合物, 特히 페놀型 有機物의 生成에 基因한다는 結論을 얻었다.

  • PDF

Fabrication of Aluminum/Aluminum Nitride Composites by Reactive Mechanical Alloying

  • Yu, Seung-Hoon;Shin, Kwang-Seon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1294-1295
    • /
    • 2006
  • Various reactions and the in-situ formation of new phases can occur during the mechanical alloying process. In the present study, Al powders were strengthened by AlN, using the in-situ processing technique during mechanical alloying. Differential thermal analysis and X-ray diffraction studies were carried out in order to examine the formation behavior of AlN. It was found that the precursors of AlN were formed in the Al powders and transformed to AlN at temperatures above $600^{\circ}C$. The hot extrusion process was utilized to consolidate the composite powders. The microstructure of the extrusions was examined by SEM and TEM. In order to investigate the mechanical properties of the extrusions, compression tests and hardness measurements were carried out. It was found that the mechanical properties and the thermal stability of the Al/AlN composites were significantly greater than those of conventional Al matrix composites.

  • PDF

Bioglass내의 수식체가 유리의 물성 및 아파타이트 형성에 미치는 영향 (Effect of Modifiers in Bioglass on the Glass Properties and the Formation of Apatite)

  • 길철영;이호필
    • 한국세라믹학회지
    • /
    • 제29권8호
    • /
    • pp.623-629
    • /
    • 1992
  • The possible use of bioglass as implant materials is due to its biocompatibility to human body. Even if many animal studies for the bioglasses have been performed, their compositional dependences of structures and physical properties are not fully understood. In the present work, physical property measurements such as density and thermal expansion coefficient were carried out for the bioglasses, with substitution of CaO for Na2O in bioglass composition (46.1%SiO2, 24.4%Na2O, 26.9%CaO, 2.6%P2O5:mol%). Hydroxyapatite formation on the glass surface was also examined after reacted in Tris-buffer solution. As CaO was substituted for Na2O, the bond strength between nonbridging oxygen and modifier became stronger to make glass structure rigid, and resulted in increase in density and decrease in thermal expansion coefficient. When the bioglasses were reacted in Tris-buffer solution, hydroxyapatite was formed on the bioglass surface for all prepared glasses in 2 hours, independently on CaO content, and the thickness of hydroxyapatite layer was decreased a little, while the thickness of SiO2 rich layer was decreased sharply with CaO content.

  • PDF

Thermal Formation of Polycyclic Aromatic Hydrocarbons from Cyclopentadiene (CPD)

  • Kim, Do-Hyong;Kim, Jeong-Kwon;Jang, Seong-Ho;Mulholland, James A.;Ryu, Jae-Yong
    • Environmental Engineering Research
    • /
    • 제12권5호
    • /
    • pp.211-217
    • /
    • 2007
  • Polycyclic aromatic hydrocarbon growth from cyclopentadiene (CPD) pyrolysis was investigated using a laminar flow reactor operating in a temperature range of 600 to $950^{\circ}c$. Major products from CPD pyrolysis are benzene, indene and naphthalene. Formation of observed products from CPD is explained as follows. Addition of the cyclopentadienyl radical to a CPD $\pi$-bond produces a resonance-stabilized radical, which further reacts by one of three unimolecular channels: intramolecular addition, C-H bond $\beta$-scission, or C-C bond $\beta$-scission. The intramolecular addition pathway produces a 7-norbornenyl radical, which then decomposes to indene. Decomposition by C-H bond $\beta$-scission produces a biaryl intermediate, which then undergoes a ring fusion sequence that has been proposed for dihydrofulvalene-to-naphthalene conversion. In this study, we propose C-C bond $\beta$-scission pathway as an alternative reaction channel to naphthalene from CPD. As preliminary computational analysis, Parametric Method 3 (PM3) molecular calculation suggests that intramolecular addition to form indene is favored at low temperatures and C-C bond $\beta$-scission leading to naphthalene is predominant at high temperatures.

Effect of Flue Gas Heat Recovery on Plume Formation and Dispersion

  • Wu, Shi Chang;Jo, Young Min;Park, Young Koo
    • 한국입자에어로졸학회지
    • /
    • 제8권4호
    • /
    • pp.161-172
    • /
    • 2012
  • Three-dimensional numerical simulation using a computational fluid dynamics (CFD) was carried out in order to investigate the formation and dispersion of the plume discharged from the stack of a thermal power station. The simulation was based on the standard ${\kappa}{\sim}{\varepsilon}$ turbulence model and a finite-volume method. Warm and moist exhaust from a power plant stack forms a visible plume as entering the cold ambient air. In the simulation, moisture content, emission velocity and temperature of the flue gas, air temperature and wind speed were dealt with the main parameters to analyze the properties of the plume composed mainly of water vapor. As a result of the simulation, the plume could be more apparent in cold winter due to a big difference of latent heat capacity. At no wind condition, the white plume rises 120 m upward from the top of the stack, and expands to 40 m around from the stack in cold winter after flue gas heat recovery. The influencing distance of relative humidity will be about 100 m to 400 m downstream from the stack with a cross wind effect. The decrease of flue gas temperature by heat recovery of thermal energy facilitates the formation of the plume and restrains its dispersion. Wind speed with vertical distribution affects the plume dispersion as well as the density.

난류강도가 수소 동축분류 난류 확산화염의 NOx 생성에 미치는 영향 (The Effect of Turbulence Intensity on the NOx Formation of Hydrogen Coaxial Jet Turbulent Diffusion Flames)

  • 한지웅;정영식;이창언
    • 대한기계학회논문집B
    • /
    • 제25권2호
    • /
    • pp.147-155
    • /
    • 2001
  • Experimental investigations were conducted for two hydrogen-nitrogen coaxial jet diffusion flames. A flame was a conventional coaxial jet diffusion flame and the other was a coaxial jet diffusion flame of which ambient air-jet turbulence was intensified. In this study, firstly two kinds of NOx measuring system were campared by using different convertors, secondly the NOx formation characteristics were investigated in order to examine the effect of turbulence intensity. In this study it is known that stainless convertor has some problem in the converting process from NO$_2$to NO in fuel rich region but molybdenum convertor can detect the amount of NOx correctly. The increase of turbulence intensity reduces the thermal NOx less than a half in our experiment and this effect is conspicuous near the nozzle. The conversion rate from NO to NO$_2$and the portion of NO$_2$among NOx are increased with turbulence intensity. These NOx measurements will help to understand the influences of turbulence intensity on NOx formation.