• Title/Summary/Keyword: Thermal expansion data

Search Result 161, Processing Time 0.028 seconds

Web-Based On-Line Thermal Performance Analysis System for Turbine Cycle of Nuclear Power Plant (온라인 웹기반 원전 터빈 사이클 열성능 분석 시스템)

  • Choi KiSang;Choi KwangHee;Ji MoonHak;Hong SeungYeol;Kim SeongKun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.409-416
    • /
    • 2005
  • We need to develop a on-line thermal performance analysis system for nuclear power plant to determine performance status and heat rate of turbine cycle. We have developed PERUPS(PERformance Upgrade System) to aid the effective performance analysis of turbine cycle. Procedures of performance calculation are improved using several adaptations from standard calculation algorithms based on PTC(Performance Test Code). Robustness in the on-line performance analysis is increased by verification & validation scheme for measured input data. The system also provides useful web interfaces for performance analysis such as graphic heat balance of turbine cycle and components, turbine expansion lines, automatic generation of analysis report. The system was successfully applied for YongGwang nuclear plant unit #3,4.

Measurement of Bow in Silicon Solar Cell Using 3D Image Scanner (3D 스캔을 이용한 실리콘 태양전지의 휨 현상 측정 연구)

  • Yoon, Phil Young;Baek, Tae Hyeon;Song, Hee Eun;Chung, Haseung;Shin, Seungwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.823-828
    • /
    • 2013
  • To reduce the cost per watt of photovoltaic power, it is important to reduce the cell thickness of crystalline silicon solar cells. As the thickness of the silicon layer is reduced, two distinctive thermal expansion rates between the silicon and the aluminum layer induce bowing in a solar cell. With a thinner silicon layer, the bowing distance grows exponentially. Excessive bowing could damage the silicon wafer. In this study, we tried to measure an irregularly curved silicon solar cell more accurately using a 3D image scanner. For the detailed analysis of the three-dimensional bowing shape, a least square fit was applied to the point data from the scanned image. It has been found that the bowing distance and shape distortion increase with a decrease in the thickness of the silicon layer. An Ag strip on top of the silicon layer can reduce the bowing distance.

Effects of the electronic expansion valve and variable velocity compressor on the performance of a refrigeration system

  • Lago, Taynara G.S.;Ismail, Kamal A.R.;Nobrega, Claudia R.E.S.;Moura, Luiz F.M.
    • Advances in Energy Research
    • /
    • v.7 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Energy consumption of air-conditioning and refrigeration systems is responsible for about 25 to 30% of the energy demand especially in hot seasons. This equipment is mostly electricity dependent and their use in principle affects negatively the environment. Enhancing the energy efficiency of the existing equipment is important as one of the measures to reduce environment impacts. This paper reports the results of an experimental study to evaluate the impacts of the use electronic expansion valve and variable velocity compressor on the performance of vapor compression refrigeration system. The experimental rig is composed of two independent circuits one for the vapor compression system and the other is the secondary fluid system. The vapor compression system is composed of a forced air condenser unit, evaporator, hermetic compressor and expansion elements, while the secondary system has a pump for circulating the secondary fluid, and an air conditioning heat exchanger. The manufacturer's data was used to determine the optimal points of operation of the system and consequently tests were done to evaluate the influence of variation of the compressor velocity and the opening of the expansion device on the performance of the refrigeration system. A fuzzy logic model was developed to control the rotational velocity of the compressor and the thermal load. Fuzzy control model was made in LabVIEW software with the objective of improving the system performance, stability and energy saving. The results showed that the use of fuzzy logic as a form of control strategy resulted in a better energy efficiency.

Analysis of Effect of Surface Temperature Rise Rate of 72.5 Ah NCM Pouch-type Lithium-ion Battery on Thermal Runaway Trigger Time (72.5 Ah NCM계 파우치형 리튬이온배터리의 표면온도 상승률이 열폭주 발생시간에 미치는 영향 분석)

  • Lee, Heung-Su;Hong, Sung-Ho;Lee, Joon-Hyuk;Park, Moon Woo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.1-9
    • /
    • 2021
  • With the convergence of the information and communication technologies, a new age of technological civilization has arrived. This is the age of intelligent revolution, known as the 4th industrial revolution. The 4th industrial revolution is based on technological innovations, such as robots, big data analysis, artificial intelligence, and unmanned transportation facilities. This revolution would interconnect all the people, things, and economy, and hence will lead to the expansion of the industry. A high-density, high-capacity energy technology is required to maintain this interconnection. As a next-generation energy source, lithium-ion batteries are in the spotlight today. However, lithium-ion batteries can cause thermal runaway and fire because of electrical, thermal, and mechanical abuse. In this study, thermal runaway was induced in 72.5 Ah NCM pouch-type lithium-ion batteries because of thermal abuse. The surface of the pouch-type lithium-ion batteries was heated by the hot plate heating method, and the effect of the rate of increase in the surface temperature on the thermal runaway trigger time was analyzed using Minitab 19, a statistical analysis program. The correlation analysis results confirmed that there existed a strong negative relationship between each variable, while the regression analysis demonstrated that the thermal runaway trigger time of lithium-ion batteries can be predicted from the rate of increase in their surface temperature.

Assessment of Thermal Stress in Temporary Bridge (가교량의 온도응력 평가)

  • Park, Young Hoon;Lee, Seung Yong;Byun, Yun Joo;Chang, Dong Il
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.1 s.34
    • /
    • pp.1-10
    • /
    • 1998
  • The temporary steel bridges which are constructed for detour and constructional expediency are consisted of H-beams(as superstructure) and H-piles(as substructure). Because these members are fastened by high-tension bolts, there are no expansion joints in these bridges. So, these kinds of bridges have no system which can relieve the excessive thermal stress. In this investigation, monitoring system was set up at temporary steel bridge and stress and temperature changes of H-beam are monitored. From these measured data, it is analyzed that the relationship between ambient and main-girder temperature change, between temperature and stress change. With these analyses, it is resulted that the thermal stress take main part of stress variation in this bridge and the restrain of thermal longitudinal displacement of H-pile. In addition, because the connection part of H-beam to H-beam is weak in the continuous spans, the sub-modelling is well apt to reflect the effect of thermal stress.

  • PDF

Field Test to Investigate the Thermal Stress of Continuous Welded Rail on High Speed Railway Bridges in Summer Period (고속철도 교량상 장대레일의 하절기 온도응력 계측)

  • Kwark, Jong-Won;Choi, Eun-Suk;Chin, Won-Jong;Lee, Jung-Woo;Kim, Byung-Suk;Kang, Jae-Yoon
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.131-136
    • /
    • 2006
  • Most modern railways, especially the high speed railway tracks, use continuous welded rail(CWR) for the less maintenance. For the CWR track has very few expansion joints, track buckling has always been an unpredictable event and it happens mainly by high compressive stress in rail in summer period. Therefore, it is important to understand the variation of rail stress induced by thermal loads which has direct influence on the rail buckling and stability of railway track. This paper describes the experimental investigation of the variation of rail temperature and stress in a high speed railway track on bridge structure. Field measurement was performed to examine the correlation between the rail temperature and rail stress on the Korean High Speed Railway line. Regression functions were derived from measured data to determine the rail stress f3r an arbitrary rail temperature varies from 20 to 50 degree Celsius.

Study for the Deformation and Fatigue Life of a PEMFC (고분자 전해질 연료전지 막의 변형 및 피로수명)

  • Yang, Jeong-Hwan;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.400-407
    • /
    • 2011
  • The stress distribution and stress amplitude of a membrane are major factors to decide the mechanical fatigue life of PEMFC (Polymer Electrolyte Membrane Fuel Cell). In this paper, mechanical stresses under operating hygro-thermal condition of the membrane are numerically modelled. Contact analysis between gas diffusion layer (GDL) and the membrane is performed under various temperature-humidity conditions. The structural model has nonlinear material properties depending on temperature and relative humidity. Several geometric conditions are applied to the model. The numerical analysis results indicate that deformations of the membrane are strongly related with assembly conditions of the fuel cell. The fatigue life is predicted for practical operating condition through experimental data.

An Experimental Investigation of Direct Condensation of Steam Jet in Subcooled Water

  • Kim, Yeon-Sik;Chung, Moon-Ki;Park, Jee-Won;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.45-57
    • /
    • 1997
  • The direct contact condensation phenomenon, which occurs when steam is injected into the subcooled water, has been experimentally investigated. Two plume shapes in the stable condensation regime are found to be conical and ellipsoidal shapes depending on the steam mass flux and the liquid subcooling. Divergent plumes, however, are found when the subcooling is relatively small. The measured expansion ratio of the maximum plume diameter to the injector inner diameter ranges from 1.0 to 2.3. By means of fitting a large amount of measured data, an empirical correlation is obtained to predict the steam plume length as a function of a dimensionless steam mass flux and a driving potential for the condensation process. The average heat transfer coefficient of direct contact condensation has been found to be in the range 1.0~3.5 ㎿/$m^2$.$^{\circ}C$. Present results show that the magnitude of the average condensation heat transfer coefficient depends mainly on the steam mass fin By using dynamic pressure measurements and visual observations, six regimes of direct contact condensation have been identified on a condensation regime map, which are chugging, transition region from chugging to condensation oscillation, condensation oscillation, bubbling condensation oscillation, stable condensation, and interfacial oscillation condensation. The regime boundaries are quite clearly distinguishable except the boundaries of bubbling condensation oscillation and interfacial oscillation condensation.

  • PDF

The Measurement of Real Deformation Behavior in Pilot LNG Storage Tank Membrane (Pilot LNG저장탱크 멤브레인 실 변형 거동 측정)

  • Kim Y.K.;Yoon I.S.;Oh B.T.;Rong S.H.;Yang Y.M.;Kim J.K.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.27-31
    • /
    • 2005
  • The membrane to be applied inside of the LNG storage tank is provided with corrugations to absorb thermal contraction and expansion caused by LNG temperature and pressure changes. It is very important to measure their thermal strains under LNG temperature by analytical and experimental stress analysis of the membrane. We have developed a stress measurement system using strain gages and measured the strain during cooldown and storing the LNG. We also analyzed the measured data by comparison with the FEM data.

  • PDF

Thermal-Hydro-Mechanical Behaviors in the Engineered Barrier of a HLW Repository: Engineering-scale Validation Test (고준위폐기물처분장 공학적방벽의 열-수리-역학적 거동 연구: 엔지니어링 규모의 실증실험)

  • Lee, Jae-Owan;Cho, Won-Jin
    • Tunnel and Underground Space
    • /
    • v.17 no.6
    • /
    • pp.464-474
    • /
    • 2007
  • An enhancement in the performance and safety of a high-level waste repository requires a validation of its engineered barrier. An engineering-scale test (named "KENTEX") has been conducted to investigate the thermal-hydro-mechanical behaviors in the engineered barrier of the Korean reference disposal system The validation test started on May 31, 2005 and is still under operation. The experimental data obtained allowed a preliminary and qualitative interpretation of the thermal-hydro-mechanical behaviors in the bentonite blocks. The temperature was higher as it became closer to the heater, while it became lower as it was farther away from the heater. The water content had a higher value in the part close to the hydration surface than that in the heater part. The relative humidity data suggested that a hydration of the bentonite blocks might occur by different drying-wetting processes, depending on their position. The total pressure was continuously increased by the evolution of the saturation front in the bentonite blocks and thereby the swelling pressure. Near the heater region, there was also a significant contribution of the thermal expansion of bentonite and the vapor pressure in the pores of the bentonite blocks.