• 제목/요약/키워드: Thermal expansion behavior

검색결과 300건 처리시간 0.025초

페라이트 내에 고용된 미량의 탄소가 오스테나이트화 거동 및 페라이트와 오스테나이트의 열팽창 계수에 미치는 영향 (The Effects of Solute Carbon Atoms in Ferrite on Austenitization and the Thermal Expansion Coefficients of Ferrite and Austenite)

  • 문유미;박지혜;강신곤;정재길;이상민;이영국
    • 열처리공학회지
    • /
    • 제26권6호
    • /
    • pp.300-305
    • /
    • 2013
  • The effects of solute carbon atoms on the thermal expansion coefficients of ferrite and austenite as well as austenitization behavior were investigated by comparing carbon-free ferrite and carbon-containing ferrite. The thermal expansion coefficients and austenitization start and finish temperatures were measured using a dilatometer. Solute carbon atoms at elevated temperatures above the cementite dissolution temperature (650 K) decreased the thermal expansion coefficients of both ferrite and austenite. In addition, minute amount of carbon atoms dissolved in ferrite stimulated austenite nucleation during continuous heating, resulting in the lower starting temperature of austenitization.

플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산 (Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation)

  • 김명재;곽종욱;김지웅;김경남
    • 한국재료학회지
    • /
    • 제33권10호
    • /
    • pp.422-429
    • /
    • 2023
  • High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.

Effects of tensile softening on the cracking resistance of FRP reinforced concrete under thermal loads

  • Panedpojaman, Pattamad;Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.447-461
    • /
    • 2010
  • Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete structures. However, under elevated temperatures, the difference between the transverse coefficients of thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP reinforced concrete against the thermal expansion based on a mechanical model that accounts for the tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical temperature increments at which the splitting failure of the concrete cover occurs and the internal crack radii estimated are compared with the results obtained from the previous studies. Simplified equations for estimating the critical temperature increments and the minimum concrete cover required to prevent concrete splitting failure for a designated temperature increment are also derived for design purpose.

전단지연 이론을 이용한 단섬유 형태의 SMA 보강 고분자 복합재료의 열변형 거동 해석 (Thermo-Mechanical Behavior of Short SMA Reinforced Polymeric Composite Using Shear tag Theory)

  • 정태헌;이동주
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1001-1010
    • /
    • 1999
  • Thermo-mechanical behavior of discontinuous shape memory alloy(SMA) reinforced polymeric composite has been studied using modified shear lag theory and finite element(FE) analysis with 2-D multi-fiber model. The aligned and staggered models of short-fiber arrangement are employed. The effects of fiber overlap and aspect ratio on the thermomechanical responses such as the thermal expansion coefficient are investigated. It is found that the increase of both tensile stress(resistance stress) in SMA fiber and compressive stress in polymer matrix with increasing aspect ratio is the main cause of low thermal deformation of the composite.

공작기계용 볼 베어링의 억지끼워맞춤과 내부틈새변화에 관한 해석적 연구 (FE-analysis of Shrink Fits and Internal Clearance for Ball Bearing of Machine Tool)

  • 김웅;이춘만;황영국
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.135-141
    • /
    • 2009
  • The bearing clearance is influenced by shrink fit and thermal expansion during operation. The designer must take into account the reduction of clearance after installation to the interference fits, and thermal expansion must be considered. The purpose of this study is to grasp the internal clearance variation and behavior of a bearing which is a deep connected with fatigue life of bearing and performance of spindle through FEM(Finite Element Method). Finite element analysis is performed by using commercial code ANSYS according to variation of thermal condition and rotational speeds. This paper presents correct negative internal clearance according to temperature during operation. Furthermore, interrelation between thermal expansion and contraction are presented to maintain adequate contact force for three type of spindle system (HSK-A60, HSK-40E, HSK-32E). The influence of the centrifugal force and Internal clearance variation of bearing is studied to operating rotational speed.

Construction and Application of Experimental Formula for Nonlinear Behavior of Ferroelectric Ceramics Switched by Electric Field at Room Temperature during Temperature Rise

  • Ji, Dae Won;Kim, Sang-Joo
    • 한국세라믹학회지
    • /
    • 제55권1호
    • /
    • pp.67-73
    • /
    • 2018
  • A poled lead zirconate titanate (PZT) cube specimen that is switched by an electric field at room temperature is subject to temperature increase. Changes in polarization and thermal expansion coefficients are measured during temperature rise. The measured data are analyzed to obtain changes in pyroelectric coefficient and strain during temperature change. Empirical formulae are developed using linear or quadratic curve fitting to the data. The nonlinear behavior of the materials during temperature increase is predicted using the developed formulae. It is shown that the calculation results can be compared successfully with the measured values, which proves the accuracy and reliability of the developed formulae for the nonlinear behavior of the materials during temperature changes.

Stability and nonlinear vibration of a fuel rod in axial flow with geometric nonlinearity and thermal expansion

  • Yu Zhang;Pengzhou Li;Hongwei Qiao
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4295-4306
    • /
    • 2023
  • The vibration of fuel rods in axial flow is a universally recognized issue within both engineering and academic communities due to its significant importance in ensuring structural safety. This paper aims to thoroughly investigate the stability and nonlinear vibration of a fuel rod subjected to axial flow in a newly designed high temperature gas cooled reactor. Considering the possible presence of thermal expansion and large deformation in practical scenarios, the thermal effect and geometric nonlinearity are modeled using the von Karman equation. By applying Hamilton's principle, we derive the comprehensive governing equation for this fluid-structure interaction system, which incorporates the quadratic nonlinear stiffness. To establish a connection between the fluid and structure aspects, we utilize the Galerkin method to solve the perturbation potential function, while employing mode expansion techniques associated with the structural analysis. Following convergence and validation analyses, we examine the stability of the structure under various conditions in detail, and also investigate the bifurcation behavior concerning the buckling amplitude and flow velocity. The findings from this research enhance the understanding of the underlying physics governing fuel rod behavior in axial flow under severe yet practical conditions, while providing valuable guidance for reactor design.

전자 패키징용 금속복합재료의 온도에 따른 열팽창 특성 (Analysis of Temperature dependent Thermal Expansion Behavior in MMCs for Electronic packaging)

  • 정성욱;남현욱;정창규;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.73-76
    • /
    • 2002
  • This study developed SiC/Al composites for electronic packaging to which reinforcements were added with the volume fractions of 49%, 56% and 63% by the squeeze casting method. 0.8 wt.% of the inorganic binder as well as the $Al_2O_3$ fiber and SiC particles with the volume fraction of 1:10 were added to the SiC/Al composites For the produced SiC/Al composites, the CTEs (coefficients of thermal expansion) were measured from 30 to $300^{\circ}C$ and compared with the FEM numerical simulation to analyze the temperature dependent properties. The experiment showed the CTEs of SiC/Al composites that were intermediate values of those of Rule of Mixture and Turner's Model. The CTEs were close to Turner's Model in the room temperature and approached the Rule of Mixture as the temperature increases. These properties analyzed from the difference of the average stress acting between the matrix and the reinforcements proposed in this study

  • PDF

플렉서블 태양전지 기판재용 금속포일의 열팽창 특성 연구 (Study on Thermal expansion properties of metal foils substrate for flexible solar cells)

  • 임태홍;이흥렬;구승현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.265-268
    • /
    • 2007
  • 플렉서블 태양전지용 연성기판재에는 플라스틱재와 금속재가 있다. 기존의 연성기판인 플라스틱의 경우 열과, 내구성, 화학약품에 약하다는 단점이 있으며, 금속기판은 높은 생산원가, 박판화의 어려움 등의 문제를 안고 있다. 상업적으로 응용되거나 연구에 활용되는 플렉서블 기판재의 단점을 보완할 수 있는 가능성을 밝혀보기 위해 전주성형법으로 합금 금속 포일을 제조하여 상용 금속 기판재의 열팽창 거동과 비교해 보았다. 본 연구에서는 플렉서블 태양전지용으로 적용되거나 연구되고 있는 금속 기판 재료인 두께 50 ${\mu}m$인 Ti, Mo, Al 포일을 선택하여 열팽창거동을 조사하였고 이를 전주성형법으로 제조한 두께 10 ${\mu}m$인 Fe-40Ni, Fe-45Ni, Fe-52Ni 합금포일의 열팽창 거동과 비교 분석하였다. 금속 및 합금 포일의 열팽창 거동은 TMA 장비를 사용하여 조사하였다.

  • PDF

엽납석을 활용한 저열팽창 코디어라이트 세라믹스 합성 (Synthesis of Low-Thermal-Expansion Cordierite Ceramics Prepared from Pyrophyllite)

  • 김동민;정숙인;이훈철;이상진
    • 한국재료학회지
    • /
    • 제25권7호
    • /
    • pp.330-335
    • /
    • 2015
  • A low thermal expansion ceramic, cordierite ($2MgO{\cdot}2Al_2O_3{\cdot}5SiO_2$), was synthesized using pyrophyllite. Pyrophyllite usually consists of $SiO_2$ and $Al_2O_3$, which are the main components of cordierite. $MgCO_3$ and $Al(OH)_3$ were added in various amounts to pyrophyllite and fired for synthesis and sintering. ${\alpha}$-cordierite crystallized from $1000^{\circ}C$ with mixing of 20 wt% $MgCO_3$ and 1.7 wt% $Al(OH)_3$, and un-reacted cristobalite was also detected with the cordierite. As the temperature was increased to $1400^{\circ}C$, the cordierite yield was gradually increased. Powder compacts of the synthesized cordierite were sintered between $1250^{\circ}C{\sim}1400^{\circ}C$; the sintered samples showed a low thermal expansion coefficient of $2.1{\times}10^{-6}/^{\circ}C$ and typical sintering behavior. It is anticipated that it will be possible to synthesize cordierite ceramics on a mass production scale using the mineral pyrophyllite.