• 제목/요약/키워드: Thermal evolution

검색결과 356건 처리시간 0.044초

Soft Tissue Reconstruction of Complete Circumferential Defects of the Upper Extremity

  • Ng, Zhi Yang;Tan, Shaun Shi Yan;Lellouch, Alexandre Gaston;Cetrulo, Curtis Lisante Jr;Chim, Harvey Wei Ming
    • Archives of Plastic Surgery
    • /
    • 제44권2호
    • /
    • pp.117-123
    • /
    • 2017
  • Background Upper extremity soft tissue defects with complete circumferential involvement are not common. Coupled with the unique anatomy of the upper extremity, the underlying etiology of such circumferential soft tissue defects represent additional reconstructive challenges that require treatment to be tailored to both the patient and the wound. The aim of this study is to review the various options for soft tissue reconstruction of complete circumferential defects in the upper extremity. Methods A literature review of PubMed and MEDLINE up to December 2016 was performed. The current study focuses on forearm and arm defects from the level at or proximal to the wrist and were assessed based on Tajima's classification (J Trauma 1974). Data reviewed for analysis included patient demographics, causality, defect size, reconstructive technique(s) employed, and postoperative follow-up and functional outcomes (when available). Results In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 14 unique articles were identified for a total of 50 patients (mean=28.1 years). Underlying etiologies varied from extensive thermal or electrical burns to high impact trauma leading to degloving or avulsion, crush injuries, or even occur iatrogenically after tumor extirpation or extensive debridement. Treatment options ranged from the application of negative pressure wound dressings to the opposite end of the spectrum in hand transplantation. Conclusions With the evolution of reconstructive techniques over time, the extent of functional and aesthetic rehabilitation of these complex upper extremity injuries has also improved. The proposed management algorithm comprehensively addresses the inherent challenges associated with these complex cases.

Thermochemical Sulfate Reduction Simulation Experiments on the Formation and Distribution of Organic Sulfur Compounds in the Tuha Crude Oil

  • Yue, Changtao;Li, Shuyuan;Song, He
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.2057-2064
    • /
    • 2014
  • Thermochemical sulfate reduction (TSR) was conducted in autoclave on the system of crude oil and $MgSO_4$ at different temperatures. Gas chromatography pulsed flame photometric detector (GC-PFPD) was used to detected the composition of organic sulfur compounds in oil phase products. The results of the analysis indicate that with increased temperature, the contents of organic sulfur compounds with high molecular weight and thermal stability, such as benzothiophenes and dibenzothiophenes, gradually became dominated. In order to gain greater insight into the formation and distribution of organic sulphur compounds from TSR, positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used in detecting the detailed elemental composition and distribution of them. The mass spectra showed that the mass range of sulfur compounds was 200-550 Da. Four sulfur class species, $S_1$, $N_1S_1$, $O_1S_1$ and $O_2S_1$, were assigned in the positive-ion spectrum. Among the identified sulfur compounds, the $S_1$ class species was dominant. The most abundant $S_1$ class species increase associated with the DBE value and carbon number increasing which also indicates the evolution of organic sulfur compounds in TSR is from the labile series to the stable one. In pure blank pyrolysis experiments with crude oil cracking without TSR, different composition and distribution of organic sulfur compounds in oil phase products were seen from mass spectra in order to evaluate their pyrolysis behaviors without $MgSO_4$. FT-IR and XRD were used in analyzing the products of solid phases. Two distinct crystallographic phases MgO and $MgSO_4$ are found to coexist in the products which demonstrated the transformation of inorganic sulfur compounds into organosulfur compounds exist in TSR.

소형냉각재 상실사고시 루프밀봉 형성 및 제거에 대한 예측 (Prediction of Loop Seal Formation and Clearing During Small Break Loss of Coolant Accident)

  • Lee, Sukho;Kim, Hho-Jung
    • Nuclear Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.243-251
    • /
    • 1992
  • 소형 냉각재 상실사고시 루프밀봉 형성 및 제거에 대하여 LSTF에서 수행된 실험 SB-CL-18의 결과를 RELAP5/MOD2와 /MOD3를 이용하여 예측하였다. 본 연구는 증기발생기 상향 및 하향 유동에서의 비대칭 냉각재수용에 따른 마노메트릭 유동에 의해 노심노출의 조기발생을 야기시키는 열수력학적 현상을 예측하기 위하여 수행되었다. RELAP5/MOD2를 이용한 해석결과는 루프밀봉 형성 및 제거를 포함하여 감압사고시의 주요 현상을 전반적으로 잘 예측하고 있으나 기초 계산외 결과를 볼 때 현상 및 시간적 순서에 관련하여 몇 가지의 차이가 있었다. RELAP5/MOD3는 RELAP5/MOD2보다 전반적인 현상, 특히 증기발생기 액체수용을 보다 잘 예측하고 있으며, 또 한 RELAP5/MOD3를 이용하여 증기발생기 U자관과 펌프 흡입관의 nodalization수를 늘린 경우는 루프 밀봉제거현상과 시간적 순서를 잘 예측할 수 있었다.

  • PDF

전자패키지용 경사조성 $Al-SiC_p$복합재료의 열.기계적 변형특성 해석 (Thermomechanical Analysis of Functionally Gradient $Al-SiC_p$ Composite for Electronic Packaging)

  • 송대현;최낙봉;김애정;조경목;박익민
    • Composites Research
    • /
    • 제13권6호
    • /
    • pp.23-29
    • /
    • 2000
  • 층상구조재료가 갖는 약점으로는 구성재료층 간의 열.기계적 특성 차이로 인하여 내부응력이 발생되고 비틀림 변형이 유발되어 형상 제어가 매우 어려울 뿐만 아니라, 반복적인 열 하중으로 인해 열이력을 받을 경우 접합부에서의 파손이 생길 수 있다는 것이다. 최근 층상구조에서 조직 혹은 조성이 점차적으로 변하는 계면을 삽입한 경사조성재료는 열.기계적 변형특성 차이에 의한 재료의 손상을 최소화시킬 수 있으나, 용도에 적합한 구조설계를 위해서 열.기계적 해석이 필요하다. 본 연구에서는 전자패키징용 $Al-SiC_p$ 경사조성 복합재료의 기하학적 구조와 온도변화에 따른 곡면화 변형 및 내부응력분포를 해석하고자 하였다. 한편 층상구조 $Al-SiC_p$ 경사조성 복합재료의 열변형량을 측정하고 내부응력분포를 실험적으로 구하여, 이론적으로 계산한 결과와 비교하였다. 본 연구의 해석결과는 경사조성 층상구조재료의 최적구조 설계에 유용하게 적용할 수 있다.

  • PDF

비진공법 CuInSe2 태양전지에서 MoSe2의 생성을 억제하기 위한 산화 몰리브데늄 확산장벽 층 (Molybdenum Oxides as Diffusion Barrier Layers against MoSe2 Formation in A Nonvacuum Process for CuInSe2 Solar Cells)

  • 이병석;이도권
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.85-90
    • /
    • 2015
  • Two-step processes for preparing $Cu(In,Ga)Se_2$ absorber layers consist of precursor layer formation and subsequent annealing in a Se-containing atmosphere. Among the various deposition methods for precursor layer, the nonvacuum (wet) processes have been spotlighted as alternatives to vacuum-based methods due to their potential to realize low-cost, scalable PV devices. However, due to its porous nature, the precursor layer deposited on Mo substrate by nonvacuum methods often suffers from thick $MoSe_2$ formation during selenization under a high Se vapor pressure. On the contrary, selenization under a low Se pressure to avoid $MoSe_2$ formation typically leads to low crystal quality of absorber films. Although TiN has been reported as a diffusion barrier against Se, the additional sputtering to deposit TiN layer may induce the complexity of fabrication process and nullify the advantages of nonvacuum deposition of absorber film. In this work, Mo oxide layers via thermal oxidation of Mo substrate have been explored as an alternative diffusion barrier. The morphology and phase evolution was examined as a function of oxidation temperature. The resulting Mo/Mo oxides double layers were employed as a back contact electrode for $CuInSe_2$ solar cells and were found to effectively suppress the formation of $MoSe_2$ layer.

Smoldering 연소로 인한 화재사고 조사보고 소개 및 이론적 해석 (Investigation and Theoretical Analysis of a Fire Accident Caused by Smoldering Combustion)

  • 김연승;변영철;황정호
    • 한국화재소방학회논문지
    • /
    • 제13권3호
    • /
    • pp.3-17
    • /
    • 1999
  • 산호제의 양이 충분치 못한 밀폐된 공간에서는 화재가 발생하지 않으리라는 기대를 깨고, 다공성 물질내부에서 공극안에 있는 산화제를 이용하여 서서히 연소되는 smoldering 반응을 통하여 대형 화재가 발생할 수 있다. 본 논문에서는 하나의 실제 화재 사건을 화재 조사 방법에 의하여 기술한 보고서를 바탕으로 하여 smoldering 연소가 화재의 발생에 미치는 영향을 예시하였으며, 예시된 사고의 smoldering 연소를 강제대류에 의한 하향식 역방향 smoldering으로 모델링하였다. 화학반응으로는 열분해가 없는 1 단계 반응이 채택되어, 온도 및 산화제의 공간적 분포와 smoldering의 전파속도를 수치적으로 모사하였다. 수치결과로서 유입되는 산화제의 양과 연료의 공극률이 반응지역의 전파속도를 결정하는 가장 우세한 인자로 파악되었다. 그러므로 smoldering 에 의한 화재 발생시 유입되는 산화제의 양과 연료의 공극률과의 관계를 알고 있다면 주어진 연료의 공극률에 대하여 유입되는 산화제의 양을 제어함으로써 불길로의 천이를 억제할 수 있음을 제시하고 있다.

  • PDF

ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

  • Jain, Vikas;Nayak, A.K.;Dhiman, M.;Kulkarni, P.P.;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.625-636
    • /
    • 2013
  • Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor 'AHWR' is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI), Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

잉크젯 프린팅된 은(Ag) 박막의 등온 열처리에 따른 미세조직과 전기 비저항 특성 평가 (Microstructure and Electrical Resistivity of Ink-Jet Printed Nanoparticle Silver Films under Isothermal Annealing)

  • 최수홍;정정규;김인영;정현철;정재우;주영창
    • 한국재료학회지
    • /
    • 제17권9호
    • /
    • pp.453-457
    • /
    • 2007
  • Interest in use of ink-jet printing for pattern-on-demand fabrication of metal interconnects without complicated and wasteful etching process has been on rapid increase. However, ink-jet printing is a wet process and needs an additional thermal treatment such as an annealing process. Since a metal ink is a suspension containing metal nanoparticles and organic capping molecules to prevent aggregation of them, the microstructure of an ink-jet printed metal interconnect 'as dried' can be characterized as a stack of loosely packed nanoparticles. Therefore, during being treated thermally, an inkjet-printed interconnect is likely to evolve a characteristic microstructure, different from that of the conventionally vacuum-deposited metal films. Microstructure characteristics can significantly affect the corresponding electrical and mechanical properties. The characteristics of change in microstructure and electrical resistivity of inkjet-printed silver (Ag) films when annealed isothermally at a temperature between 170 and $240^{\circ}C$ were analyzed. The change in electrical resistivity was described using the first-order exponential decay kinetics. The corresponding activation energy of 0.44 eV was explained in terms of a thermally-activated mechanism, i.e., migration of point defects such as vacancy-oxygen pairs, rather than microstructure evolution such as grain growth or change in porosity.

Ti 첨가에 따른 Al 미세구조 변화 효과와 산화 TiAl 절연층을 갖는 자기터널접합의 자기저항 특성 (Effect of Ti Concentration on the Microstructure of Al and the Tunnel Magnetoresistance Behaviors of the Magnetic Tunnel Junction with a Ti-alloyed Al-oxide Barrier)

  • 송진오;이성래
    • 한국자기학회지
    • /
    • 제15권6호
    • /
    • pp.311-314
    • /
    • 2005
  • 본 연구에서는 Al-Oxide(AIOx) 에 Ti를 첨가하여. Ti 함량에 따라 자기터널접합의 자기터널링 현상 변화 및 TiA l합금박막의 미세구조, 표면거칠기 변화를 관찰하였다. Ti를 첨가한 TiAlOx 절연층을 사용하여 기존 AlOx를 사용한 경우 보다 높은 터널링 자기저항(Tunneling Magnetoresistance, TMR) 비를 가지는 자기터널접합을 제작하였다. TMR 비의 증가 요인은 Ti를 첨가함에 따라, TiAl 합금박막의 입계가 작아지고, 치밀한 구조를 가져, 우수한 계면평활도를 가지는 균일한 TiAlOx 절연층이 형성되어, 소자의 구조적 안정성이 향상되었기 때문으로 분석하였다. 또한 향상된 구조적 안정성으로 인해 소자의 열적, 전기적 안정성도 크게 증가하였다.

양산단층지역에 분포하는 퇴적암 및 화성암류에 대한 고자기 연구 (Palaeomagnetic Study of Sedimentary and Igneous Rocks in the Yangsan Strike-slip Fault Area, SE Korea)

  • 강희철;김인수;손문;정현정
    • 자원환경지질
    • /
    • 제29권6호
    • /
    • pp.753-765
    • /
    • 1996
  • It is a well known fact that the remanent magnetization direction of the Tertiary rocks is deflected significantly clockwise (about $50^{\circ}$) in the Tertiary basins of the southeastern part of Korean peninsula. This fact has been interpreted as an evidence of north-south spreading of the East Sea (Sea of Japan) and dextral strike-slip motion of the Yangsan fault. As deflection (rotation) of remanent magnetizations is frequently reported from various regions of the world in the vicinities of strike-slip fault, such phenomena are to be expected in the Yangsan fault region also. It was the purpose of this study to clarify whether such premise is right or not. A total of 445 independently oriented core samples were collected from Cretaceous rocks of various lithology (sedimentary rocks, andesites and I-type granites) in the Yangsan fault area. In spite of through AF and thermal demagnetization experiments, no sign of remanent magnetization deflection was found. Instead, palaeomagnetic poles calculated from formation-mean ChRM directions are very similar to those of contemporary (Barremian, and late Cretaceous-Tertiary) sedimentary and plutonic rocks in the other parts of $Ky{\check{o}}ngsang$ basin as well as those of China. Therefore, possibility of tilting of granite plutons and horizontal block rotation of study area is excluded. It is also concluded that the Yangsan fault did not take any significant role in the Cenozoic tectonic evolution of southeast Korea and the East Sea region. The boundary between rotated and unrotated region of remanent magnetization is not the Yangsan fault line, but must lie further east of it.

  • PDF