• 제목/요약/키워드: Thermal environmental chamber

검색결과 111건 처리시간 0.041초

비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과 (Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli)

  • 김기영;백남원;김용희;유관호
    • 한국산업보건학회지
    • /
    • 제28권1호
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.

방출셀을 이용한 액상건축자재 오염물질 방출시험방법 정립에 관한 연구 (Study on establishment of emission cell test method for liquid phase building materials)

  • 임정연;장성기;서수연
    • 분석과학
    • /
    • 제22권3호
    • /
    • pp.191-200
    • /
    • 2009
  • 이 연구는 소형방출챔버와 방출셀을 이용한 총휘발성유기화합물(TVOC) 방출시험결과의 상관성을 규명하여 방출셀을 이용한 액상 건축자재 오염물질 방출시험 방법을 정립하고 활용방안을 제시하기 위한 기초 자료를 확보하고자 수행되었다. 소형방출챔버와 방출셀을 이용한 액상 건축자재 방출시험을 실시하기 위해 방출시험 적합성 여부를 판단하고 최적조건을 확립하기 위하여 방출시험장치, 분석기기에 대한 성능평가를 실시하였다. 방출시험 장치인 소형방출챔버와 방출셀의 배경농도 청정도, 기밀도, 회수율, 분석장치인 열탈착장치 회수율 및 GC/MS 기기재현성, 방법검출한계(MDL) 등을 평가한 결과 방출시험장치와 분석기기의 조건은 안정적이고 재현성과 감도가 양호하여 액상 건축자재에서 방출되는 오염물질에 대한 측정 분석조건이 최적화되었음을 확인할 수 있었다. 페인트, 접착제, 실란트로 구성된 40개의 액상 건축자재를 대상으로 소형방출챔버와 방출셀을 이용하여 오염물질 방출시험을 실시한 결과 방출되는 총휘발성유기화합물의 농도는 소형 방출챔버와 방출셀에서 모두 대수정규분포(log normal distribution)하였으며 시험방법차이에 따른 방출량 분포의 차이는 크지 않았다. 또한 방출셀을 이용하여 오염물질 방출시험을 실시하였을 때, 소형방출챔버를 이용하였을 때보다 약 1.35~1.41배 높은 방출량을 나타내었으며 상관계수(r)가 약 0.91~0.97의 범위를 보여 높은 상관성이 있는 것으로 확인되었다.

Development of Environmental Control System for High-Quality Shiitake Mushroom (Lentinus edodes (Berk.) Sing.) Production

  • Kwon, Jin-Kyung;Kim, Seung-Hee;Jeon, Jong-Gil;Kang, Youn-Ku;Jang, Kab-Yeol
    • Journal of Biosystems Engineering
    • /
    • 제43권4호
    • /
    • pp.342-351
    • /
    • 2018
  • Purpose: Recently, an increasing number of farms have been cultivating shiitake mushrooms using a sawdust substrate and a cooler/heater. In this study, an attempt was made to develop an environmental control system using a heat pump for cultivating high-quality shiitake mushrooms. Methods: An environmental control system, consisting of an air-to-water type heat pump, a thermal storage tank, and a radiator in a variable opening chamber, was designed and fabricated. The system was also installed in the cultivation facility of a farm cultivating shiitake mushrooms so as to compare the proposed control system with a conventional environmental control system using a cooler-condensing unit and an electric hot water boiler. Results: The uniformity of the environment was analyzed through environment measurements taken at several positions inside the cultivation facility. It was determined that the developed environmental control system is able to control the variations in temperature and relative humidity to within 1% and 3%, respectively. In addition, a maximum temperature difference of $30^{\circ}C$ (maximum of $35^{\circ}C$, minimum of $5^{\circ}C$) and a maximum relative humidity difference of 30% (maximum of 90%, minimum of 60%) can be attained within 30 min inside the cultivation facility through the cooling of the heat pump and heating of the radiator in a variable opening chamber. Thus, the developed control system can be used to cultivate high-quality shiitake mushrooms more effectively than a conventional cooler and heater. Conclusions: In comparison with a conventional environmental control system, the developed system decreased the yield of ordinary mushrooms by 65%, and increased that of high-quality mushrooms by 217%. This corresponds to a 16% increase in gross farm income. Consequently, the developed system is expected to improve the income of shiitake mushroom cultivating farms.

건축용 바닥재로부터의 VOCs와 Aldehydes 방출 특성 (Characteristics for VOCs and aldehydes emission rates from architectural flooring)

  • 장성기;김미현;서수연;이우석;임준호;임정연
    • 분석과학
    • /
    • 제19권6호
    • /
    • pp.544-552
    • /
    • 2006
  • 본 논문은 소형챔버법을 이용해 바닥재 종류에 따른 방출농도특성을 알아보고자 수행되었다. 환경학적 관심사가 높은 개별 휘발성유기화합물(VOC) 및 총휘발성유기화합물(TVOC)을 측정대상물질로 선정하여 HPLC 및 GC/MSD를 이용하여 분석하였다. 바닥재에서 방출된 TVOC 및 포름알데히드(HCHO)의 평균방출농도는 각각 $0.3mg/m^2{\cdot}h$$0.2mg/m^2{\cdot}h$로 나타났으며 37개 바닥재 모두 방출기준을 만족하는 것으로 조사되었다. TVOC 방출농도는 PVC Sheet, PVC Tile, 마루 순으로 나타났으며, 반면 HCHO 방출농도는 PVC 계열보다 마루 제품에서 높게 나타나는 경향을 보였다.

겨울철 온도 및 습도변화에 따른 온열쾌적감에 관한 연구 (A Study of Thermal Comfort by Winter Temperature Humidity Change)

  • 김세환;이성;김동규
    • 설비공학논문집
    • /
    • 제19권11호
    • /
    • pp.803-809
    • /
    • 2007
  • To those who spend most time within a room, comfortable indoor environment is a very critical element to job performance and health. The comfort technology, which is for enhancing comfort in human living, relates with various factors to ensure human activities efficient, comfortable, safe and satisfactory. Experiments were performed in environmental chamber. Experimental conditions were combinations from three temperatures of 18, 22 and 26C, and two relative humidity levels of 45 and 60%. Air-flow was controlled to 0.1m/s through the experiment. Four male and four female university students participated in the experiments. They had normal blood pressure and their body temperature was under $37^{\circ}C$. From the experiments for evaluating thermal sensation to the air-heating conditions, relationships among TSV, CSV, $SET^*$, PMV were analyzed. Results can be summarized as followings; Thermal neutrality $SET^*$ of man and female was $24.8^{\circ}C$. In air-heating condition, $SET^*$ values for thermal comfort zone were $23.0{\sim}26.5^{\circ}C$. These values were higher than the values from ASHRAE.

Performance and emission characteristics of biodiesel blends in a premixed compression ignition engine with exhaust gas recirculation

  • Kathirvelu, Bhaskar;Subramanian, Sendilvelan
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.294-301
    • /
    • 2017
  • This paper is based on experiments conducted on a stationary, four stroke, naturally aspirated air cooled, single cylinder compression ignition engine coupled with an electrical swinging field dynamometer. Instead of 100% diesel, 20% Jatropha oil methyl ester with 80% diesel blend was injected directly in engine beside 25% pre-mixed charge of diesel in mixing chamber and with 20% exhaust gas recirculation. The performance and emission characteristics are compared with conventional 100% diesel injection in main chamber. The blend with diesel premixed charge with and without exhaust gas recirculation yields in reduction of oxides of nitrogen and particulate matter. Adverse effects are reduction of brake thermal efficiency, increase of unburnt hydrocarbons (UBHC), carbon monoxide (CO) and specific energy consumption. UBHC and CO emissions are higher with Diesel Premixed Combustion Ignition (DPMCI) mode compared to compression ignition direct injection (CIDI) mode. Percentage increases in UBHC and CO emissions are 27% and 23.86%, respectively compared to CIDI mode. Oxides of nitrogen ($NO_x$) and soot emissions are lower and the percentage decrease with DPMCI mode are 32% and 33.73%, respectively compared to CIDI mode.

Development of a Model Instrument of Thermal Power Plant for Understanding of Air Pollutant Generation

  • Yamamoto, Mariko;Ma, Chang-Jin
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권3호
    • /
    • pp.156-161
    • /
    • 2016
  • In order to deal with current environmental issues and their backgrounds, further development of current teaching methods and tools are essential. The result of questionnaire performed in this study indicates that the effect and the change of the perception of power generation in Japan after the great disaster of East Japan have caused many students (both high school and college students) to become interested in the energy situation. In the present study, we made an attempt to develop a model instrument of a thermal power plant that can be applied as a teaching tool for understanding of air pollutant forming as well as power generation. Our novel model tool consists of a body (30 cm width, 21 cm depth, and 41 cm height), a combustion chamber, two motors, a boiler, a voltmeter, and a chimney for measurement of exhaust gas. Using our novel hand-made power plant, we carried out some model experiments with learners (i.e. high school and college students). Through model experiments, students can be experienced not only about power generation but also about generation of air pollutants. In order to estimate the applicability of our novel instrument as an educational tool, we carried out the questionnaires before and after model experiments. More than 80% of educatees reported that it was very useful as a teaching tool for energy and environmental education. The results of questionnaires indicated that learners achieved a very deep understanding of the principles of power generation and the forming of air pollutants.

고온 분위기에서 디젤 분무의 거동에 관한 연구 (A Behavior Study of Diesel Spray on High Temperature)

  • 류호성;정임권;송규근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.410-415
    • /
    • 2000
  • A diesel engine is one of the major prime movers to its high thermal efficiency. But due to the recent attention far the environmental pollution, the emissions of diesel engine became to a important problem. So it is needed to understand the characteristics of diesel spray injected into a combustion chamber. The factor which controls the diesel spray are the injection pressure, the nozzle diameter, the impinging angle and the variation of pressure and temperature. In this paper, experiments were conducted far the variation of the environmental temperature(273k, 373k, 573k), free spray and impinging spray. And the notions of penetration, spray angle, axial distance for free spray, and axial distance, spray thickness from impinging wall fur impinging spray.

  • PDF

고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로 (Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test)

  • 오민택;이동섭;손영진;이인모;최항석
    • 한국터널지하공간학회 논문집
    • /
    • 제18권5호
    • /
    • pp.401-412
    • /
    • 2016
  • 고수압 조건의 해저터널 공사에 기존의 그라우팅 공법은 제한을 받게 되어 굴착작업이 어려울 수 있으나, 인공동결공법을 적용할 경우 신속한 차수 및 지반보강 효과를 얻을 수 있다. 인공동결공법을 적용할 경우, 동결 조건에 따라 동결토의 거동이 크게 변화하므로 기존의 연구 사례를 바탕으로 해저지반 등 특수한 조건에서 동결토의 역학적 거동을 예측하는 것에는 한계가 있다. 또한, 인공동결공법의 설계를 위해서는 동결체 형성에 필요한 소요시간 및 동결범위를 산정해야 하며, 해저지반의 경우 간극수 내 염분의 영향을 반영해야 한다. 본 논문에서는 동결토의 열적 특성을 파악하기 위해 인조규사 시료에 대한 실내 열전도도 측정시험과 동결챔버시험을 수행하였다. 동결토와 비동결 포화토 간극수의 염도를 조절하여 동결 과정과 염분에 따른 유효 열전도도를 비정상 열선법을 적용하여 측정하였다. 인조규사 간극수의 염도에 의한 동결특성 변화를 파악하기 위해 동결챔버를 설계 및 제작하였고 이를 통하여 동결 조건을 변화시키며 동결챔버시험을 수행하였다. 동결 조건에 따른 시료내 온도 변화를 분석하고 이를 통해 동결 조건이 사질토의 열전달 특성에 미치는 영향을 평가하였다. 비동결 포화토의 경우는 간극수가 담수(염도 0%)인 조건과 염수(염도 3.5%)인 조건 모두 유효 열전도도가 유사하게 평가되었으나, 동결토의 경우는 간극수가 염수인 조건이 보다 큰 유효 열전도도를 보였다. 이는 동결챔버시험에서 간극수가 염수인 조건이 담수인 조건보다 동결속도가 더 빠른 결과와 일치한다.

Removal of residual VOCs in a collection chamber using decompression for analysis of large volatile sample

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • 분석과학
    • /
    • 제34권1호
    • /
    • pp.23-35
    • /
    • 2021
  • In order to measure the volatile organic compounds (VOCs) of a sample which is too large to use commercially available chamber, a stainless steel vacuum chamber (VC) (with an internal diameter of 205 mm and a height of 50 mm) was manufactured and the temperature of the chamber was controlled using an oven. After concentrating the volatiles of the sample in the chamber by helium gas, it was made possible to remove residual volatile substances present in the chamber under reduced pressure ((2 ± 1) × 10-2 mmHg). The chamber was connected to a purge & trap (P&T) using a 6 port valve to concentrate the VOCs, which were analyzed by gas chromatography-mass spectrometry (GC-MS) after thermal desorption (VC-P&T-GC-MS). Using toluene, the toluene recovery rate of this device was 85 ± 2 %, reproducibility was 5 ± 2 %, and the detection limit was 0.01 ng L-1. The method of removing VOCs remaining in the chamber with helium and the method of removing those with reduced pressure was compared using Korean drinking water regulation (KDWR) VOC Mix A (5 μL of 100 ㎍ mL-1) and butylated hydroxytoluene (BHT, 2 μL of 500 ㎍ mL-1). In case of using helium, which requires a large amount of gas and time, reduced pressure ((2 ± 1) × 10-2 mmHg) only during the GC-MS running time, could remove VOCs and BHT to less than 0.1 % of the original injection concentration. As a result of analyzing volatile substances using VC-P&T-GC-MS of six types of cell phone case, BHT was detected in four types and quantitatively analyzed. Maintaining the chamber at reduced pressure during the GC-MS analysis time eliminated memory effect and did not affect the next sample analysis. The volatile substances in a cell phone case were also analyzed by dynamic headspace (HT3) and GC-MS, and the results of the analysis were compared with those of VC-P&T-GC-MS. Considering the chamber volume and sample weight, the VC-P&T configuration was able to collect volatile substances more efficiently than the HT3. The VC-P&T-GC-MS system is believed to be useful for VOCs measurement of inhomogeneous large sample or devices used inside clean rooms.