• Title/Summary/Keyword: Thermal enhancement ratio(TER)

Search Result 6, Processing Time 0.019 seconds

An Experimental Study on the Effects of Hyperthermia and Irradiation on the Rat's Kidney (방사선조사와 온열요법이 백서신에 미치는 조직 변화에 관한 실험적 연구)

  • Yoo, Myung-Hee;Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.157-169
    • /
    • 1989
  • Radiological and clinical evidences indicate that hyperthermia combined with irradiation produce a significant improvement in therapeutic effect of cancer The experiences obtained from 90 rats' kidney A single dose of irradiation ranged from 6Gy, 8Gy and 10Gy was delivered on the rat's kidney. The combined therapy group had the same irradiation after hyperthermia at $42\~44^{\circ}C$ for 30 minutes. Microscopic examination and calculation of thermal enhancement ratio were carried out, and the results were as follows: 1. In the group of hyperthermia alone, there were moderate glomerular congestion and mild tubular degeneration on light microscopic examination. 2. In the group of irradiation alone, tubular degeneration was noted in 6Gy irradiation and its severity was increased along with radiation dose. 3. In the group of hyperthermia combined with irradiation, tubular degeneration and necrosis were appeared in 6Gy and 10Gy irradiation, respectively. 4. On electron microscopic examination, proximal convoluted tubular and glomerular changes in irradiation group were similar to that of combined with hyperthermia, and its severity was increased along with observation periods. 5. Thermal enhancement ratio (TER) was 1.0 after evaluation of histipathologic changes in rat's kidney, with combination therapy.

  • PDF

An Experimental Study on the Effectiveness of Microwave Hyperthermia Combined with Radiation on the Small and Large Intestine in rats (흰쥐의 장조직에 X-선 조사와 마이크로파 온열요법의 효과에 관한 실험적 연구)

  • Ahn, Kyung-Sook;Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.5 no.2
    • /
    • pp.83-95
    • /
    • 1987
  • The synergistic effect of combining radiation therapy and hyperthermia kills significantly more cells than using either modality alone. The reason for enhanced cell killing from the combined treatment is that the two modalities are complementary. For histopathological exmination, 102 rats were divided into 4 groups as hyperthermia, radiation, hyperthermia combined with radiation and normal control groups. The effect of prior irradiation (6-15 Gy of X-ray) on the response of small and large bowel of rats to $40^{\circ}C-44^{\circ}C$ (for 30 minutes) microwave (2450 MHz) hyperthermia was investigated. The musculature of the small and large intestine remained intact and the circumference of the histological sections were not significantly altered by the heated at $43^{\circ}C$ for 30 minutes. Thermal enhancement ratios of normal tissue is 1.0 Thermal enhancement ratio was not increased in combination therapy by evaluation of histopathologic changes in small and large intestine.

  • PDF

An Experimental Study on the Effect of Combined X-ray and Microwave Hyperthermia on the Rectum and Urinary Bladder of Rats (흰쥐의 직장과 방광에 X-선 조사와 마이크로파 온열요법의 효과에 관한 실험적 연구)

  • Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.115-128
    • /
    • 1986
  • Hyperthermia can enhance the radiation effect as a synergistic reaction in combined X-ray irradiation and hyperthermia; hyperthermia sensitize radioresistant S-phase cells and inhibit cellular recovery from sublethal damage. We fabricated 100 watts, 2450 MHz microwave applicator for hyperthermia and planned the method and condition of heating and measured the temperature by using Agar phantom as a preliminary test. For biological examination, 102 rats were divided into 4 groups as hyperthermia, X-ray irradiation (6Gy-15Gy), combined X-ray and hyperthermia, and normal control groups. Microscopic examination of the rectum and bladder was done and the results were as followings: 1. The microwave generator with 100 watts, 2450MHz magnetron could be heating up to $40^{\circ}{\sim}50^{\circ}C$ for one hour in living tissue. 2. The thermal distribution in tissue equivalent phantom with microwave can be maintained at $40^{\circ}{\sim}44^{\circ}C$ in area of 3cm in depth and 2-10cm in diameter. 3. In Hyperthermia alone group, there was submucosal edema of the rectum but no histologic change in the urinary bladder was seen. 4. The minimal necrosis of the mucosa was appeared in the rectum and bladder after 15 days of 6 Gy and 8 Gy irradiation respectively. The minimal necrosis of the muscle layer of rectum and bladder was appeared after 15 days of 8Gy and 60days of 10Gy irradiation respectively. 5. In combined group of radiation and hyperthermia, thermal enhancement ratio (calculated at necrosis of mucosa and muscle layer) of rectum and bladder was 1.0, and it suggest that there is no change of tolerance dose of normal rectum and bladder.

  • PDF

An Experimental Study on the Effects of X-ray Irradiation and Hyperthermia on the Rat Testis (X-선 조사와 온열요법이 백서고환에 미치는 영향에 관한 실험적 연구)

  • Lee, Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.8 no.1
    • /
    • pp.17-27
    • /
    • 1990
  • The effects of both hyperthermia alone and X-ray irradiation combined with hyperthermia on rat testis have been investigated. The histological changes were observed on 15 and 30 days after treatment. There was no histological change of rat testis by hyperthermia alone. The earliest change by X-ray irradiation was the degeneration of the spermatogonia of the seminiferous tubule, which was appeared in 2 Gy group. Necrosis of the spermatogonia was severe in 6 Gy group and complete atrophy was developed in 8 Gy group. With increased dose of radiation, the degree of changes of tubules was increased. In combined group of X-ray irradiation and hyperthermia, the histological change of the seminiferous tubule was more severe than X-ray alone group. Necrosis and atrophy of the spermatogonia were appeared in 2 Gy and complete atrophy of spermatogonia was seen in 6 Gy group. Thermal enhancement ratio (calculated at the complete atrophy of the spermatogonia) was 1.3 in this experiment. There was no difference in observation time inverval between 15 and 30 days after each treatment in all groups.

  • PDF

Combined Effects of Gamma-irradiation and Hyperthermia on the Human Cell Lines for Various Temperatures and Time Sequences (감마선과 온열치료 병용시 세포 치사 능력 증강에 관한 실험적 연구)

  • Koh Kyung Hwan;Cho Chul Koo;Park Woo Yoon;Yoo Seong Yul;Yun Hyong Geun;Shim Jae Won;Lee Mi Jung
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 1993
  • We tried to establish the theoretical basis of clinical use of combined modality of hyperthermia and radiation therapy. For this purpose, we made an in vitro experiment in order to get the synergistic and/or additive effects on the cell killing of hyperthermia combined with radiation therapy by using the microwave-hyperthermia machine already installed at our department. In our experiment, we use two human cell lines: MKN-45 (adenocarcinoma of stomach) and K-562 (leukemia cell lines). In cases of combined treatments of hyperthermia and gamma-irradiation, the therapeutic effect was the highest in the simultaneous trial. Hyperthermia after gamma irradiation showed slightly higher therapeutic effect than that before irradiation without significant difference, but its effect was the same in the interval of 6 hours between hyperthermia and irradiation. The higher temperature and the longer treatment time were applied, the higher therapeutic effects were observed. We could observe the thermoresistance by time elapse at $43^{\circ}C$. When hyperthermia was done for 30 minutes at the same temperature, thermal enhancement ratio (TER) at DO. 01 (dose required surviving fraction of 0.01) were $2.5{\pm}0.08,\;3.75{\pm}0.18$, and $5.0{\pm}0.15\;at\;436{\circ}C,\;44^{\circ}C,\;and\;45^{\circ}C$ respectively in K-562 leukemia cell lines. Our experimental data showed that more cell killing effect can be obtained in the leukemia cell lines, although they usually are known to be radiosensitive, when treated with combined hyperthermia and radiation therapy. Furthermore, our data show that leukemia cell lines may have various intrinsic radiosensitivity, especially in vitro experiments. The magnitude of cell killing effect, however, will be less than that of MKN-45.

  • PDF

The Effect of Hyperthermia Combined with Radiation on Crypts of the Mouse Jejunum (마우스공장 소낭선의 방사선 효과에 온열요법의 병용이 미치는 영향에 관한 실험적 연구)

  • Bae, Hoon-Sik;Park, Charn-Il;Kim, Jung-Jin
    • Radiation Oncology Journal
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 1987
  • The effect of local hyperthermia of 41 to $43^{\circ}C$ for 30 minutes on radiosensitivity of normal tissue was studied utilizing jejunal crypt microcolony assay. Hyperthermia of this range enhanced the radiation effect and the effect was mainly additive without significant effect on the slopes of cell survival curves. At the isoeffect level of 20 microcolony formation, the thermal enhancement ratio was 1.02, 1.10 and 1.39 for $41^{\circ},\;42^{\circ}\;and\;43^{\circ}C$, respectively. The distribution of microcolony formation along the circumference of jejunum was not uniform, having more colonies around the mesenteric border, and this suggests the effect of uneven cooling by blood circulation.

  • PDF