• 제목/요약/키워드: Thermal energy performance

검색결과 1,929건 처리시간 0.04초

습식온돌시스템과 전기온돌시스템의 열성능 평가 (Thermal Performance Assessment of Wet Ondol and Electric Ondol System)

  • 한병조;구경완
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.214-220
    • /
    • 2011
  • This paper studies about the assessment of thermal performance between wet ondol system and electric ondol system. Electrical ondol systems shows faster warm-up time, higher floor surface temperature distribution and lower power consumption than wet ondol system. However, if we provide heat regularly wet ondol system which has more heat capacity shows greater thermal storage than electric ondol system. Therefore, we could conclude that wet ondol system which keeps temperature regularly by the thermal storage show better energy-efficiency in case of using the central heating and district heating system. However, Electrical ondol system shows better efficiency in case of using the space during short time or individual heating systems which needs to heat quickly. The Experiment says that electric ondol system has more benefits on timing to reach the set temperature and energy-efficiency than wet ondol system.

덧유리 및 방풍재 적용을 통한 슬라이딩 창의 단열 및 기밀성능 개선효과 분석 (The Effect of the Attached Glazing and Windbreak on the Thermal Performance and Air Tightness of Sliding window)

  • 배민정;강재식;최경석;최현중
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.59-65
    • /
    • 2017
  • Purpose: Thermal performance and air tightness of window are improved for the building energy efficiency. As the deteriorated houses are increased, the improve measures with low cost and easy installation are developed in the energy performance of window. Attached glazing and windbreak can be easily applied to the window with low cost. In this paper, the effect of the attached glazing and windbreak on the thermal performance and air tightness of window is analyzed as the measure to improve performance of window. Method: Thermal transmittance of glazing is evaluated through WINDOW simulation according to thickness of attached glazing and air cavity. Based on the simulation results, thermal transmittance, air tightness and condensation resistance performance of four cases are tested according to Korea standards. One type of PVC sliding double window is chosen as the specimen. For the analysis on low performance of window, the outside of window is excluded in the PVC sliding double window. Result: This study shows that thermal performance of glazing can be increased by the application of attached glazing. Furthermore, lower thermal performance of glazing can obtain the higher effect of attached glazing. The application of attached glazing and windbreak can effect on increasing thermal performance and air tightness of window.

PVDF 중공사막을 이용한 진공 막 증류 모듈의 공급수 조건에 따른 열성능 특성에 관한 실험적 연구 (An Experimental Study on the Characteristic of Thermal Performance according to Feed Water Conditions to of Vacuum Membrane Distillation Module using PVDF Hollow Fiber)

  • 주홍진;곽희열
    • 상하수도학회지
    • /
    • 제31권4호
    • /
    • pp.339-346
    • /
    • 2017
  • In this study, thermal performance test of VMD module was performed, prior to the construction of the demonstration plant using the vacuum membrane distillation (VMD) module of the capacity of $400m^3/day$ and to the commercialization of the VMD module. For the thermal performance test, the experimental equipment of capacity of $2m^3/day$ was constructed. The permeate flux test and thermal performance test according to feed water conditions such as temperature and flow rate were conducted. The VMD module used in the study was manufactured by ECONITY Co., LTD with PVDF hollow fiber membrane. As a result, the Performance Ratio (PR) of the VMD module showed the maximum value of 0.904 under the condition of feed water temperature of $75^{\circ}C$ and flow rate of $8m^3/h$. PR value of the VMD module using PVDF hollow fiber membrane showed linearly increasing relationship with feed water temperature and flow rate. Also, The permeate flux of the VMD module was analyzed to have maximum value of 18.25 LMH and the salt rejection was 99.99%.

가속노화 시험을 통한 진공단열패널(VIP)의 장기성능 평가 연구 (The Study of Long-Term Performance Evaluation of Vacuum Insulation Panel(VIP) with Accelerated Aging Test)

  • 김진희;김준태
    • 한국태양에너지학회 논문집
    • /
    • 제37권4호
    • /
    • pp.35-47
    • /
    • 2017
  • Energy efficiency solutions are being pursued as a sustainable approach to reducing energy consumption and related gas emissions across various sectors of the economy. Vacuum Insulation Panel (VIP) is an energy efficient advanced insulation system that facilitates slim but high-performance insulation, based on a porous core material evacuated and encapsulated in a barrier envelope. Although VIP has been applied in buildings for over a decade, it wasn't until recently that efforts have been initiated to propose and adopt a global standard on characterization and testing of VIP. One of the issues regarding VIP is its durability and aging due to pressure and moisture dependent increase of the initial low thermal conductivity with time; more so in building applications. In this paper, the aging of commercially available VIP was investigated experimentally; thermal conductivity was tested in accordance with ISO 8302 standard (guarded hot box method) and long-term durability was estimated based on a non-linear pressure-humidity dependent equation based on study of IEA/ECBCS Annex 39, with the aim of assessing durability of VIP for use in buildings. The center-of-panel thermal conductivity after 25 years based on initial 90% fractile with a confidence level of 90 % for the thermal conductivity (${\lambda}90/90$) ranged from 0.00726-0.00814 (W/m K) for silica core VIP. Significant differences between manufacturer-provided data and measurements of thermal conductivity and internal pressure were observed.

PV모듈의 냉각장치를 적용한 집속형 복합패널의 집열 특성 평가 (Thermal Characteristics Evaluation of Concentrated Hybrid Panel with cooling system on PV module)

  • 서유진;허창수
    • 한국태양에너지학회 논문집
    • /
    • 제25권3호
    • /
    • pp.47-52
    • /
    • 2005
  • Normally if sunlight is directed on a solar cell without any increasing in temperature, the amount of absorption energy per unit area of each cell is increasing. In a silicon solar cell. however, cell conversion efficiency decreases with the increase of temperature. Therefore, to maintain cell conversion efficiency under normal condition, it is necessary to keep the cell at operating temperature. We tried to design and make new hybrid panel with cooling system to prevent increasing of temperature on cell, collect and use thermal energy more effectively. We compared performance of this new hybrid panel with current thermal panel. We also evaluated conversion efficiency, thermal capacity and confirmed cooling effects from thermal absorption efficiency.

액체식 Unglazed PVT 복합모듈의 성능실험연구 (An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module)

  • 김진희;강준구;김준태
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

태양열 및 외기 열원식 히트펌프 시스템 시뮬레이션 (Simulation of Solar and Ambient-air-assisted Heat Pump)

  • 백남춘;박준언;송병하;이진국;김홍제
    • 태양에너지
    • /
    • 제20권4호
    • /
    • pp.17-24
    • /
    • 2000
  • Thermal performance of a SAAHPS (Solar and Ambient-air-assisted Heat Pump System) located in KIER is simulated with TRNSYS 14.2. The SAAHPS is composed of dual evaorators, each of which is used as a solar fluid heat source and an air fluid heat source. Polynomial coefficients data for the SAAHPS is supplied with Frigosoft, a program widely used for heat pump modeling. In general, collector area and storage volume are 2 key parameters in SAAHPS thermal performance. A parametric study is performed in this study to assess sensitivity of collector area and storage volume in SAAHPS. We concluded that firstly collector area and storage volume are the primary variables in SAAHPS thermal performance, secondly COP of SAAHPS is higher than that of conventional heat pumps. Therefore. collector efficiency can be enhanced swith SAAHPS during a heating season.

  • PDF

Updating BIM: Reflecting Thermographic Sensing in BIM-based Building Energy Analysis

  • Ham, Youngjib;Golparvar-Fard, Mani
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.532-536
    • /
    • 2015
  • This paper presents an automated computer vision-based system to update BIM data by leveraging multi-modal visual data collected from existing buildings under inspection. Currently, visual inspections are conducted for building envelopes or mechanical systems, and auditors analyze energy-related contextual information to examine if their performance is maintained as expected by the design. By translating 3D surface thermal profiles into energy performance metrics such as actual R-values at point-level and by mapping such properties to the associated BIM elements using XML Document Object Model (DOM), the proposed method shortens the energy performance modeling gap between the architectural information in the as-designed BIM and the as-is building condition, which improve the reliability of building energy analysis. The experimental results on existing buildings show that (1) the point-level thermography-based thermal resistance measurement can be automatically matched with the associated BIM elements; and (2) their corresponding thermal properties are automatically updated in gbXML schema. This paper provides practitioners with insight to uncover the fundamentals of how multi-modal visual data can be used to improve the accuracy of building energy modeling for retrofit analysis. Open research challenges and lessons learned from real-world case studies are discussed in detail.

  • PDF

공기식 태양광/열 시스템 공기채널 내 여러 저항체 설치에 따른 전열성능에 관한 CFD 해석 (CFD Analysis on the Heat Transfer Performance with Various Obstacles in Air Channel of Air-Type PV/Thermal Module)

  • 최휘웅;파쿠르 로커만;김영복;윤정인;손창효;최광환
    • 한국태양에너지학회 논문집
    • /
    • 제38권2호
    • /
    • pp.33-43
    • /
    • 2018
  • PV/Thermal module is the combined system, which consist of a photovoltaic module and solar thermal collector that can obtain electrical power and thermal energy simultaneously. Thus the power generation can be increase by decreasing the temperature of photovoltaic module and thermal energy retrieved from module also can be used for heating system. In this study, Heat transfer performance of air type PV/Thermal module was confirmed with various bottom obstacles that can be installed easily to real photovoltaic module by CFD (computational fluid dynamics) analysis. Eight type obstacles were investigated according to the shape and arrangement. As a result, nusselt number represent heat transfer performance was increased about 86% compare with the basic type PV/Tthermal module that has no obstacle and triangle type obstacle had higher value than other types. But pressure drop was also increased with increment of heat transfer enhancement. Thus the performance factor considering both heat transfer and pressure drop was confirmed and V-fin type obstacle arranged in a row for Reynolds number below 9,600 and protrusion type obstacle arranged in zigzag for Reynolds number above 14,400 were shown higher performance factor than other types. From these results, V-fin type obstacle arranged in row and protrusion type obstacle arranged in zigzag were considered as a proper type for applying to real PV/thermal module according to operating condition. But the heat transfer performance can be changed by the geometric conditions of obstacle such as height, width, length and arrangement. Thus, it could also confirmed that the optimal condition and arrangement of this obstacle need to be found in further study.

발전소 온배수 폐열을 이용한 제주 시설온실 냉난방용 열펌프 시스템의 난방성능 평가 (An Evaluation of Heating Performance of the Heat Pump System Using Wasted Heat from Thermal Effluent for Greenhouse Facilities in Jeju)

  • 문성부;현명택;허재혁;이동원;이연건
    • 에너지공학
    • /
    • 제28권1호
    • /
    • pp.22-29
    • /
    • 2019
  • 발전소 온배수의 폐열을 회수하여 인근 농가에 난방 에너지를 공급하는 열펌프 시스템은 기존 난방방식 대비 에너지 사용량을 획기적으로 절감하고 온실가스의 배출을 줄이는 데에 기여할 수 있다. 제주대학교 컨소시움은 한국중부발전 제주화력본부에서 약 3 km의 원거리에 위치하고 있는 시설온실로 냉온수를 공급하기 위한 열펌프 시스템을 구축하였다. 본 논문에서는 열펌프 시스템의 구성과 더불어, 2018년 동절기에 수행된 난방성능 평가 실증운전 결과를 기술하였다. 열펌프 가동운전 시 대부분의 공급열 수송배관 내 담수의 온도강하는 $2^{\circ}C$ 이하로 유지됨을 확인하였다. 난방운전 시 열펌프의 성능계수는 4.0 보다 크며, 온배수를 열원으로 활용하여 최대 $50^{\circ}C$의 온수를 농가로 지속적으로 공급할 수 있음을 입증하였다.