• Title/Summary/Keyword: Thermal effluents

Search Result 24, Processing Time 0.032 seconds

Basic study on Eco-industrial Park utilizing thermal effluents as heat source (온배수를 열원으로 활용하는 생태산업단지 조성에 관한 기초 연구)

  • KIM, Dong-Kyu;KANG, Dae-Seok;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.3
    • /
    • pp.400-408
    • /
    • 2009
  • The purpose of this study is to know the concept of Eco-industrial Park and How to use the thermal effluents from power plants. Thermal effluents, which use sea water for cooling, from power plants have been discharged with about $6{\sim}7^{\circ}C$ higher temperature than near sea area. Therefore, it could effect on the marine ecosystem as a external pressure factor that increase the artificial thermal load in near sea area. The applications of thermal effluents had been surveyed through the several internal and external cases for utilizing heat sources and reducing the thermal load. As the precedence research for applying, the amount of heat sources of thermal effluents was evaluated. When the thermal effluents was fully applied in heat sources and available heat, assume that use heating season by 12 hours a day of demanded available heat, it was possible to calculate total 198 Tcal of energy saving.

Evaluation on the Environmental and Social Value Awareness of the Heat Supply for the Horticultural Greenhouse using Thermal Effluents from Power Plant (화력발전소 온배수열 활용 시설하우스 열공급에 대한 환경 및 사회적 가치 인식 비교 분석)

  • Kim, Ga-Hee;Ahn, Cha-Soo;Um, Byung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.5
    • /
    • pp.125-134
    • /
    • 2018
  • Recently, interest in alternative energy has been increasing to reduce greenhouse gas emissions and fossil fuel consumption in accordance with the United Nations Framework Convention on Climate Change(UNFCCC). Accordingly, there is a need to use waste heat that unused throughout industrial systems for lowering the concentration of energy on fossil fuels. In particular, government support projects for the energy recycling of agriculture and fisheries such as cultivation of tropical crops and aquaculture are being actively carried out by utilizing waste heat and thermal effluents caused from large-scale industrial complexes including power plants. The study was conducted on supplier (power plant), consumer (farmer) and stakeholders (constructor and local governments) of domestic demonstration areas using waste heat that is abandoned from the power plant in the form of thermal effluents. It investigated the overall improvement and feasibility of government funded projects through field interviews and questionnaire-type surveys. The results of this study are expected to provide basic directions for the operation of the project in terms of nationwide expansion and diffusion of the heat source supply project at horticultural greenhouse by utilizing the thermal effluents from power plant.

Seasonal Variation of Thermal Effluents Dispersion from Kori Nuclear Power Plant Derived from Satellite Data (위성영상을 이용한 고리원자력발전소 온배수 확산의 계절변동)

  • Ahn, Ji-Suk;Kim, Sang-Woo;Park, Myung-Hee;Hwang, Jae-Dong;Lim, Jin-Wook
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.52-68
    • /
    • 2014
  • In this study, we investigated the seasonal variation of SST(Sea Surface Temperature) and thermal effluents estimated by using Landsat-7 ETM+ around the Kori Nuclear Power Plant for 10 years(2000~2010). Also, we analyzed the direction and range of thermal effluents dispersion by the tidal current and tide. The results are as follows, First, we figured out the algorithm to estimate SST through the linear regression analysis of Landsat DN(Digital Number) and NOAA SST. And then, the SST was verified by compared with the in situ measurement and NOAA SST. The determination coefficient is 0.97 and root mean square error is $1.05{\sim}1.24^{\circ}C$. Second, the SST distribution of Landsat-7 estimated by linear regression equation showed $12{\sim}13^{\circ}C$ in winter, $13{\sim}19^{\circ}C$ in spring, and $24{\sim}29^{\circ}C$ and $16{\sim}24^{\circ}C$ in summer and fall. The difference of between SST and thermal effluents temperature is $6{\sim}8^{\circ}C$ except for the summer season. The difference of SST is up to $2^{\circ}C$ in August. There is hardly any dispersion of thermal effluents in August. When it comes to the spread range of thermal effluents, the rise range of more than $1^{\circ}C$ in the sea surface temperature showed up to 7.56km from east to west and 8.43km from north to south. The maximum spread area was $11.65km^2$. It is expected that the findings of this study will be used as the foundational data for marine environment monitoring on the area around the nuclear power plant.

Influences of Thermal Effluents on the Epilithic Algal Community in Small Stream Originating from the Seokjung Hot Spring (온천 배수 유입에 따른 소형 하천의 생태계 변화와 회복에 관한 연구 -소형 하천에서 온천 배수가 부착조류 군집에 미치는 영향)

  • 정연태;문연자;김미연;최민규;길봉섭
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.345-358
    • /
    • 1999
  • To study the influences of thermal effluents flowing from hot spring on epilithic algal community, seasonal survey was carried out at stream and its watersheds from Seokjeong hot spring in Chollabuk-Do, Korea. Totally 7 points were divided into three regions fur sampling of water and epilithic algae, such as the direct effected, uneffected and the mixed region, respectively. At the discharging points of effluents, a dark-green cyanobacterial mat were remarkably constructed, mainly by two cyanobacteria, Oscillatoria and Phormidium. The mat formation were more obvious at low temperature than any other season, and even result in disappear with downstream and season. Totally, one hundred and fifty-three taxa of epilithic algae were classified with 15 unidentified species. Among the, diatoms occupied 58% of total species, whereas cyanobacteria was 67% of total biomass, comparatively. In terms of stream direction, relative abundance of cyanobacteria was only limited in the upstream in cold season, and result in this pattern disappeared with season change. Although all physicochemical variables at the discharging points, was very high, compare to other points, they were quickly decreased downstream. Among them, some heavy metals were not detected or below the detection levels at downstream. Nitrate nitrogen increased with downstream, as well as phosphorus and sulfate have a similar trend throughout, while ammonia quickly decreased in the initial period of discharging effluents. This suggest that although the thermal effluent with high temperature and organic compounds could polluted the small study stream, various contributions such as flowing water, intake of uneffected streawater and collaboration of cyanobacterial mat and stream bottom gradually induces a stable water system.

  • PDF

A Quantitative Model for Estimating Fishery Production Damages as a Result of Thermal Effluents from Nuclear Power Plants (원자력발전소의 온배수 배출량을 고려한 어업생산감소율 추정 모델)

  • Zhang, Chang-Ik;Lee, Sung-Il;Lee, Jong-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.494-502
    • /
    • 2009
  • A quantitative model was developed in order to estimate fishery production damage due to anthropogenically induced environmental changes. The model is described in the following equation, $Y_D=\frac{{\phi}_D}{{\phi}_G}[Y_0{\cdot}(t_p-t_0)-\frac{Y_0}{{\phi}_G}(1-e^{-{\phi}_G(t_p-t_0)})]$, where, $Y_D$ is annual amount of fishery production by nuclear power plant. ${\varphi}$ D and ${\varphi}$ G are instantaneous decreasing coefficient of fishery production by nuclear power plant and instantaneous decreasing coefficient of gross fishery production, respectively. $Y_0$ is annual mean fishery production without damages. $t_p$ is the present time, and $t_0$ is the starting time of damages. The model was applied to fishing grounds near a nuclear power plant on the east coast of Korea. Since fishery production damages have become bigger with increasing emission of thermal effluents from generators activities in the power plant, this factor has also been considered as, $\delta_{D_i}=\delta_D\({\sum}\limits_{i=0}^{n}\;W_i/W_T\)$, where, $\delta_{Di}$ is the cumulative damage rate in fishery production from generators, $\delta_D$ is the total cumulative damage rate in fishery production, $W_i$ is the emission amount of thermal effluents by generator i, and n is the number of generators in the nuclear power plant. This model can be used to conduct initial estimates of fishery production damages, before more detailed assessments are undertaken.

Phytoplankton Community in Adjacent Waters of Ulchin Nuclear Power Plant

  • Choi, Hyu Chang;Kang, Yeon Shik;Jeon, In Sung
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.426-437
    • /
    • 2004
  • To understand the phytoplankton community in adjacent waters of Ulchin nuclear power plant (UNPP), abundance and the size fractionated $chl-\alpha$ concentrations were evaluated through seasonal interval sampling from April 2003 to February 2004. A total of 211 different phytoplankton species was observed and mean abundance of phytoplankton in each study period ranged from 244,286 to 1,221,779 cells $L^{-1}$. The contributions of microplankton $(>20\mu{m})$ to total phytoplankton abundance ranged from 42.5 to 83.6% (average 66.1%) and those of nanoplankton $(>20\mu{m})$ ranged from 16.4 to 57.5% (average 33.9%). Total chl-$\alpha$ concentrations of phytoplankton ranged from 0.52 to $2.26\mu{g}\;L^{-1}$. The contribution of chl-$\alpha$ concentrations of microplankton was higher than that of nano- and picoplankton through the study period with exception of July 2008. The results of abundances and $chl-\alpha$ concentrations suggest that microplankton has an important role in adjacent waters of UNPP. The diminution of abundances and $chl-\alpha$ concentrations of phytoplankton was observed after passage through the cooling water system, but it was gradually recovered by mixing with the ambient waters. Our results suggested that the influence of thermal discharges on phytoplankton should be restricted within narrow limits around outlet area of thermal effluents.

Effects of Heated Effluents on the Intertidal Macroalgal Community Near Gori Nuclear Power Plant (고리원전의 온배수 방출이 주변 해조군집에 미치는 영향)

  • Kim, Young-Hwan;Ahn, Jung-Kwan;Yoon, Hee-Dong;Jang, Min-A
    • ALGAE
    • /
    • v.22 no.4
    • /
    • pp.297-304
    • /
    • 2007
  • This study is intended to clarify the effects of heated effluents on intertidal benthic marine algal community in Korea. The species composition and biomass of marine algae at the discharge canal of Gori nuclear power plant on the southeastern coast of Korea were investigated seasonally from February 2001 to October 2006. As a result, 54 species (7 blue-green, 12 green, 9 brown and 26 red algae) of marine algae were found at the discharge canal during the past six years. In general, the number of species observed was abundant during winter to spring and less in autumn. Enteromorpha compressa, E. intestinalis, E. prolifera and Caulacanthus ustulatus were common species found more than 80% frequency during the study period. Seasonal fluctuations of mean biomass were 1-440 g dry wt m–2 and dominant species in biomass were Enteromorpha spp. (contribution to a total biomass proportion 28%), Sargassum horneri (14%) and Amphiroa beauvoisii (14%). It is evident from the floristic composition and biomass data that unique micro-environment of the discharge canal support different communities from those on the intake or control area. Results from the large numbers of surveys before and during plant operation showed that, in the regions influenced by thermal effluents such as the discharge canal of power plants, the process of ecological succession has been proceeded. It is assumed that the uni-directional water flow and the time of overhaul largely affect the development and succession of benthic marine algal communities of the discharge canal.

Three-Dimensional Mixing Characteristics in Seomjin River Estuary (섬진강 하구역의 3차원 혼합특성 연구)

  • Kim, Jong-Kyu;Kwak, Gyeong-Il;Jeong, Jeong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.164-174
    • /
    • 2008
  • In this study we try to identify the three-dimensional mixing characteristics of Seomjin River discharges in Seomjin River Estuary and Gwangyang Bay using a seasonal field observation (CTD) during spring tide and a three-dimensional numerical model with EFDC (Environmental Fluid Dynamics Code). The tidal elevation conditions of the four main tidal harmonic constituents on the open boundary and river discharges and thermal effluents at the specific boundary are considered. The calculated harmonic constants of tide and tidal current agreed well with those of observations at two stations for tide and two stations for tidal current. The model successfully reproduced well known the estuarine circulation in Seomjin River Estuary where tide and river discharges are dominant forcings. In the winter mean discharges case, tidal currents move Seomjin River discharges in Seomjin River mouth and in the summer mean discharges case, river flows move Seomjin River discharges near ae Seomjin River Estuary. A three-dimensional mixing characteristics of Seomjin River Estuary show well a three-dimensional estuarine circulation and thermal effluents effect to the seasonal variation of river discharges.

  • PDF