• 제목/요약/키워드: Thermal efficiency$NO_X$

검색결과 72건 처리시간 0.03초

배기가스 재순환 방식이 예혼합 연소시스템에 미치는 영향 (The Effects of Exhaust Gas Recirculation on Premixed Combustion System)

  • 유병훈;이승로;금성민;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.1-3
    • /
    • 2013
  • The premixed combustion system applying exhaust gas recirculation was investigated to achieve the low pollutant emission and the high thermal efficiency. In this study, it was studied the effects of EGR on the thermal efficiency, $NO_x$ and CO emissions with various EGR ratios and equivalence ratios. As results, when equivalence ratio was increased, thermal efficiency increased and $NO_x$ and CO concentration increased. When EGR was applied, $NO_x$ and CO concentration decreased and thermal efficiency increased. Especially, in the case of 15% of EGR ratio at 0.85 of equivalence ratio, $NO_x$ and CO concentration will be a smaller than these of a current operating condition of the boiler and thermal efficiency was about 1.7% higher.

  • PDF

가솔린 엔진에서 합성가스 첨가량에 따른 EGR 효과에 대한 연구 (A Study on the Effects of EGR with Syngas Addition in a Gasoline Engine)

  • 윤영준;최영;강건용
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.159-164
    • /
    • 2007
  • The purpose of this study is to reduce harmful emission gases in the range of stable combustion without loss of a thermal efficiency. Therefore, effects of both exhaust gas recirculation(EGR) and synthetic gas addition on engine performance and emission were investigated in a gasoline engine. Synthetic gas(syngas), which is in general prepared from reforming gasoline, was utilized in order to promote stable combustion. The major components of syngas are H2, CO and $N_2$ gases. The percentage of syngas addition was changed from 0 to 30% in energy fraction and EGR rate was varied up to 30%. As a result, $COV_{IMEP}$ as a parameter of combustion stability was decreased and THC/$NO_X$ emissions were reduced with the increase of syngas addition. And $COV_{IMEP}$ was increased with the increase of EGR but $NO_X$ emission was greatly reduced. In addition, under the region where the EGR rate is around 20%, thermal efficiency was improved.

열교환기 관사이의 거리변화에 대한 열효율 특성 (Characteristics of Thermal Efficiency with Changing Distances Between Tubes for Heat Exchanger)

  • 김종민;이재박;이승로;이창언;금성민
    • 에너지공학
    • /
    • 제19권3호
    • /
    • pp.177-181
    • /
    • 2010
  • 열교환기는 용도에 따라 여러가지 형태가 존재하지만 중요한 것은 열교환기의 성능을 향상시킴으로서 열교환기의 크기를 소형화하는 것이라 할 수 있다. 그러나 보일러처럼 열교환기가 버너 앞에 위치할 경우 열교환기의 효율도 중요하지만 환경오염물질의 배출특성도 고려되어야 한다. 따라서 본 연구에서는 비예혼합화염보다 화염길이가 짧고 당량비 조절을 통해 $NO_x$ 및 CO 배출을 제어할 수 있는 예혼합방식의 버너 앞에 원형관 열교환기를 설치한 후 열교환기 관사이의 거리 및 당량비를 변화시킬 때 $NO_x$와 CO의 배출특성과 열교환기의 열효율을 실험적으로 구하였다.

영상처리 기술을 이용한 연소상태 진단 (Flame Diagnosis using Image Processing Technique)

  • 이태영;김성환;이상룡
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.196-202
    • /
    • 1999
  • Recent trend changes a criterion for evaluation of burner that environmental problem is raised as global issue. For efficient driving problem, the higher thermal efficiency and the lower oxygen in exhaust gas, burner is evaluated the better. For environmental problem, burner must satisfy $NO_{X}$ limit and CO limit. Consequently, 'good burner' means on whose thermal efficiency is high under the constraint of $NO_{X}$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop feedback control scheme whose output is the consistency of $NO_{X}$ and CO. This paper describes development of real time flame diagnosis technique that evaluate and diagnose combustion state such as consistency of components in exhaust gas, stability of flame in quantitative sense. This study focuses on wave length of luminescence from chemical reaction measurement of the luminescence via optical measuring apparatus and derive correlation with consistency of components in exhaust gas by image processing technique.

  • PDF

배기가스 저감을 위한 연소진단 시스템의 개발 (Development of Combustion Diagnostic System for Reducing the Exhausting Gas)

  • 이태영
    • 한국산업융합학회 논문집
    • /
    • 제4권4호
    • /
    • pp.403-411
    • /
    • 2001
  • A criterion for evaluation of burners has changed recently, and the environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the $NO_x$ and CO regulation. Consequently. 'good burner' means one whose thermal efficiency is high under the constraint of $NO_x$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of $NO_x$ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro- Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro- Fuzzy learning algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of $NO_x$ and CO of the combustion gas was successfully inferred.

  • PDF

뉴로퍼지학습 알고리듬을 이용한 연소상태진단 (Flame Diagnosis Using Neuro-Fuzzy Learning Algorithm)

  • 이태영;김성환;이상룡
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.587-595
    • /
    • 2002
  • Recent trend changes a criterion for evaluation of humors that environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the NO/sub x/ and CO regulation. Consequently, 'good burner'means one whose thermal efficiency is high under the constraint of NO/sub x/ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of NO/sub x/ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro-Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro-Fuzzy loaming algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of NO/sub x/ and CO of the combustion gas was successfully inferred.

난방용 보일러에서 NG-H2 혼소율에 따른 열 및 공해 성능의 검토 (A Study on the Thermal and Pollution Performances of the Heating Boilers with NG-H2 Mixture Ratio)

  • 서준선;김영직;박준규;이창언
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.573-584
    • /
    • 2021
  • Hydrogen is evaluated as one of the new energy sources that can overcome the limitations and pollution problems of conventional fossil fuels. Although hydrogen is CO2-free, attention is required in NOx emission and flame stability in order to use hydrogen in existing gas fuel system. However, use of electric grids is an unrealistic strategy for decarbonization for residential and commercial heating. Instead, use of H2 that utilizes city gas grid is suggested as a reasonable alternative in terms of compatibility with existing systems, economic feasibility, and accessibility. In this study, the thermal efficiency and NOx performance of the boiler according to the H2 mixture ratio and vapor humidified ratio are reviewed for a humidified NG-H2 boiler that vapor humidity to combustion air. Mixed fuel with H2 (20%) is almost similar to NG in terms of efficiency, flame temperature, and pollution performance. Thus, it is expected to be directly compatible with the existing NG system. If the exhaust temperature of the H2 boiler is lowered to around 60℃ at a humidified ratio of 15-20%, the NOx emission concentration can be suppressed to about 5-10 ppm. The level of efficiency reaches 87% of the rated load efficiency, which is equivalent to the highest grade achievable.

Euro-5 대응 디젤엔진용 EGR 쿨러의 열교환 효율 연구 (A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Engine to Meet Euro-5 Emission Regulation)

  • 이준;한창석
    • 한국자동차공학회논문집
    • /
    • 제15권3호
    • /
    • pp.183-188
    • /
    • 2007
  • Recently, diesel engine has been frequently applied to RV, SUV and light duty truck due to the good fuel economy and high thermal efficiency. $NO_x$ and PM, environmental pollution materials are basically produced in diesel combustion process. The most important target in diesel engine research is the development of system to reduce the emissions of $NO_x$ and PM. Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine and EGR cooler is the key component of the system. This study investigates the EGR cooler of oval gas tubes compared with the EGR cooler of shell & tubes to verify the heat exchange efficiency of cooler by means of engine dynamometer tests, rig performance tests and numerical analyses.

Non-thermal plasma technology for abatement of pollutant emission from marine diesel engine

  • Panomsuwan, Gasidit;Rujiravanit, Ratana;Ueno, Tomonaga;Saito, Nagahiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.929-934
    • /
    • 2016
  • Plasma technology has long been regarded as a key essential tool in many industrial and technological sectors. However, the advancement of plasma technology in marine applications has not been fully realized yet. Herein, we present a short overview on the recent trends in utilization of plasma technology for air-pollution treatment in marine diesel exhaust. Four non-thermal plasma system, including electron beam dry scrubber (EBDS), dielectric barrier discharge (DBD), electron beam-microwave (EB-MW) plasma hybrid system, and plasma-catalytic hybrid system, are described with emphasis on their efficiency in removals of $NO_x$ and $SO_x$ gases. Non-thermal plasma has the great potential to be an efficient and environmentally compatible technique in simultaneous removals of $NO_x$ and $SO_x$ gases from the exhaust of marine diesel engine in the future.

열병합발적용 Dual Fuel Engine의 질소산화물 배출저감에 관한 연구 (A Study on the Reduction of $NO_x$ Emission from Dual Fuel Engine for Co-generation System)

  • 정일래;김용술;심용식
    • 한국대기환경학회지
    • /
    • 제7권1호
    • /
    • pp.31-40
    • /
    • 1991
  • This study shows the correlation between $NO_x$ emission in the exhaust gas and various operation factors of dual fuel engine for Co-generation system. General tendency was shown that the thermal efficiency was lowered by the change of operation factors. However these were not confirmed on this experiment. Increasing T4 temperature (exhaust gas temperature at turbo-charger inlet) reduces $NO_x$ emission rate. The higher T4 temperature requires lower excess air as the excess air ratio is controlled by T4 temperature on gas mode operation. Another tendency was that $NO_x$ emission rate is reduced in case of increasing boost air temperature, quantity of pilot oil or bypassing flue gas through the exhaust gas boiler. The diameter of the fuel injection nozzle was changed smaller than design value and the injection timing was readjusted. Thus $NO_x$ emission rate could be reduced as retarding injection timing and changing hole diameter of fuel injection nozzle, however maxium engine out-put was decreased by changing fuel nozzle on the diesel mode operation.

  • PDF