• Title/Summary/Keyword: Thermal dissipation

Search Result 413, Processing Time 0.024 seconds

Heat Transfer Characteristics according to the Tube Arrangement of Bundle Type Plastic Oil Cooler (플라스틱 관다발 타입 오일쿨러의 튜브 배열에 따른 열전달 특성)

  • Heo, Hyung-Seok;Bae, Suk-Jung;Kim, Hyun-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2007
  • It has been argued that the use of plastics can cause problems during design and manufacture owing to their low strength, relatively poor thermal conductivity and large thermal expansion. However, the advantages of plastics e.g., corrosion resistance, low cost, curtailment of weight, design flexibility etc., can compensate abundantly for the disadvantages. This study analyzes and compares the heat transfer performance characteristics of automotive compact oil cooler composed of plastic tube bundle with conventional metal oil cooler on the same core area basis as diameter, tube thickness, number of tube or tube arrangement varies. The performance analyses are accomplished by use of computational fluid dynamics program Fluent 6.2, which is verified and compared with the results of performance tests. The result of analyses is coincided with that of experiments. Flow pattern at air side according to tube arrangement is dominant factor which affects heat dissipation in case of similar total heat transfer surface area.

Study on the Heat Dissipation Behavior of Diecast Mg Inverter Housing for Eco-friendly Hybrid Vehicles (친환경 전기 하이브리드 자동차용 마그네슘 다이캐스팅 인버터 하우징의 열방출 특성)

  • Cho, In-Sung;Han, Yo-Sub;Lee, Seung-Jae;Lee, Byung-jun
    • Journal of Korea Foundry Society
    • /
    • v.38 no.3
    • /
    • pp.60-65
    • /
    • 2018
  • In the present study, the characteristics of Mg inverter cases for hybrid cars are investigated. Concerns over the use of lightweight materials to reduce energy use and to mitigate emission problems are inevitable in the twenty-first century. Magnesium is a promising material for the manufacturing of lightweight parts. Several cases for thermal cooling channels have been designed and simulated, and the effects of materials and coatings on the thermal cooling efficiency have been discussed. The effects of the coating thickness on heat extraction in an Mg inverter housing case using the PEO (plasma electrolyte oxidation) coating method were also discussed. In order to produce an inverter case by the diecasting process, the filling sequence and cooling behavior during the diecasting process were simulated. The optimized process conditions from the simulation result were then used in a trial diecasting experiment.

Thermo-ompression Process for High Power LEDs (High Power LED 열압착 공정 특성 연구)

  • Han, Jun-Mo;Seo, In-Jae;Ahn, Yoomin;Ko, Youn-Sung;Kim, Tae-Heon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.4
    • /
    • pp.355-360
    • /
    • 2014
  • Recently, the use of LED is increasing. This paper presents the new package process of thermal compression bonding using metal layered LED chip for the high power LED device. Effective thermal dissipation, which is required in the high power LED device, is achieved by eutectic/flip chip bonding method using metal bond layer on a LED chip. In this study, the process condition for the LED eutectic die bonder system is proposed by using the analysis program, and some experimental results are compared with those obtained using a DST (Die Shear Tester) to illustrate the reliability of the proposed process condition. The cause of bonding failures in the proposed process is also investigated experimentally.

Seismic analysis of RC tubular columns in air-cooled supporting structure of TPP

  • Wang, Bo;Yang, Ke;Dai, Huijuan;Bai, Guoliang;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.581-598
    • /
    • 2020
  • This paper aims to investigate the seismic behavior and influence parameters of the large-scaled thin-walled reinforced concrete (RC) tubular columns in air-cooled supporting structures of thermal power plants (TPPs). Cyclic loading tests and finite element analysis were performed on 1/8-scaled specimens considering the influence of wall diameter ratio, axial compression ratio, longitudinal reinforcement ratio, stirrup reinforcement ratio and adding steel diagonal braces (SDBs). The research results showed that the cracks mainly occurred on the lower half part of RC tubular columns during the cyclic loading test; the specimen with the minimum wall diameter ratio presented the earlier cracking and had the most cracks; the failure mode of RC tubular columns was large bias compression failure; increasing the axial compression ratio could increase the lateral bearing capacity and energy dissipation capacity, but also weaken the ductility and aggravate the lateral stiffness deterioration; increasing the longitudinal reinforcement ratio could efficiently enhance the seismic behavior; increasing the stirrup reinforcement ratio was favorable to the ductility; RC tubular columns with SDBs had a much higher bearing capacity and lateral stiffness than those without SDBs, and with the decrease of the angle between columns and SDBs, both bearing capacity and lateral stiffness increased significantly.

A High Efficiency, High Power-Density GaN-based Triple-Output 48V Buck Converter Design (GaN MOSFET을 이용한 고밀도, 고효율 48V 버스용 3-출력 Buck Converter 설계)

  • Lee, Sangmin;Lee, Seung-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.412-419
    • /
    • 2020
  • In this study, a 70 W buck converter using GaN metal-oxide-semiconductor field-effect transistor (MOSFET) is developed. This converter exhibits over 97 % efficiency, high power density, and 48 V-to-12 V/1.2 V/1 V (triple output). Three gate drivers and six GaN MOSFETs are placed in a 1 ㎠ area to enhance power density and heat dissipation capacity. The theoretical switching and conduction losses of the GaN MOSFETs are calculated. Inductances, capacitances, and resistances for the output filters of the three buck converters are determined to achieve the desired current, voltage ripples, and efficiency. An equivalent circuit model for the thermal analysis of the proposed triple-output buck converter is presented. The junction temperatures of the GaN MOSFETs are estimated using the thermal model. Circuit operation and temperature analysis are evaluated using a circuit simulation tool and the finite element analysis results. An experimental test bed is built to evaluate the proposed design. The estimated switch and heat sink temperatures coincide well with the measured results. The designed buck converter has 130 W/in3 power density and 97.6 % efficiency.

Design of Linear XY Stage using Planar Configuration and Linear Motors with Halbach Magnet Array (평면형 구조와 Halbach 자석배열 선형모터를 이용한 리니어 XY 스테이지의 설계)

  • Kim, Ki-Hyun;Lee, Moon-G.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.4
    • /
    • pp.553-561
    • /
    • 2010
  • In flat panel display or semiconductor industries, they install the equipments with fine line width and high throughput for fabrication and inspection. The equipments are required to have the linear stage which can position the work-piece with high speed, fine resolution on wide range of motion. In this paper, a precision planar linear XY stage is proposed. The stage has a symmetric planar window configuration and is guided by air-bearings on granite plate. The symmetric planar window configuration makes the stage has robustness against dynamic and thermal disturbances. The air-bearings let the stage move smooth on straight guide bar and flat granite surface. The stage is actuated by linear motor with Halbach magnet array (HMA). HMA generates more confined magnetic flux than conventional array. The linear motors are optimized by using sequential quadratic programming (SQP) with the several constraints that are thermal dissipation, required power, force ripple and so on. The planar linear XY stage with the symmetric planar configuration and the linear motors is implemented and then the performance such as force ripple, resolution and stroke are evaluated.

An Experimental Study on the Cooling Characteristics of the Liquid Cooling Radiator of the Natural Convection Type by Using the PCM (PCM을 적용한 자연대류형 수냉식 방열기의 냉각특성에 관한 실험적 연구)

  • Sung, Dae-Hoon;Kim, Joung-Ha;Yun, Jae-Ho;Kim, Woo-Seung;Peck, Jong-Hyeon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.324-329
    • /
    • 2008
  • The liquid cooling effect of a natural convection type radiator by using the PCM has been investigated experimentally. The radiator size is $423{\times}295{\times}83$ mm and PCM container size is $398{\times}270{\times}26$ mm. The objective is elapsed time higher than maximum time to reach for maximum operating temperature of a general liquid cooling radiator. This study, in order to study on the effects of the phase-change phenomenon, carried out the various mass flow rate, input electric power, ambient and melting point of three type PCM. For the above experimental parameter, the melting time was performed about 180/250/560 min at input power 150 W and ambient $30^{\circ}C$ from using the three type PCM(PCM_S1/S2/S3) respectively. Furthermore, the effects of the thermal dissipation was decreased higher input power than lower input power at heating block and melting time of PCM. However, the effects of mass flow rate did not nearly affect of the thermal performance especially.

  • PDF

Loss Analysis and Air-Cooled Design for a Cascaded Electrical Source Transmitter

  • Xue, Kai-Chang;Wang, Shuang;Lin, Jun;Li, Gang;Zhou, Feng-Dao
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.530-543
    • /
    • 2015
  • Air-cooling method is adopted on the basis of the requirements for the thermal stability and convenient field use of an electrical source transmitter. The power losses of the transmitter are determined after calculating the losses of the alternating current (AC)-direct current (DC) power supply, the constant-current circuit, and the output circuit. According to the analysis of the characteristics of a heat sink with striped fins and a fan, the engineering calculation expression of the Nusselt number and the design process for air-cooled dissipation are proposed. Experimental results verify that the error between calculated and measured values of the transmitter losses is 12.2%, which meets the error design requirements of less than 25%. Steady-state average temperature rise of the heat sink of the AC-DC power supply is $22^{\circ}C$, which meets the design requirements of a temperature rise between $20^{\circ}C$ and $40^{\circ}C$. The transmitter has favorable thermal stability with 40 kW output power.

Numerical Analysis of Electromagnetic and Temperature Fields Induced by Femtosecond Laser Irradiation of Silver Nanowires (은 나노선 펨토초 레이저 조사에 의해 유도되는 전자기장 및 온도장 수치 해석)

  • Ha, Jeonghong;Kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • This work performed numerical analysis of electromagnetic field and thermal phenomena occurring in femtosecond laser irradiation of silver nanowires. The local electric field enhancement was computed to calculate the optical energy dissipation as a Joule heating source and the thermal transport was analysed based on the two-temperature model (TTM). Electron temperature increased up to 1000K after 50fs and its spatial distribution became homogeneous after 80fs at the fluence of 100mJ/cm2. The result of this work is expected to contribute to revealing the photothermal effects on silver nanowires induced by femtosecond laser irradiation. Although the highest increase of lattice temperature was substantially below the melting point of silver, the experimental results showed resolidification and fragmentation of the silver nanowire into nanoparticles, which cannot be explained by the photothermal mechanism. Further studies are thus needed to clarify the physical mechanisms.

A Study on the Heat Dissipation Characteristics of Layered Heat Sink for CPU Cooling (CPU 냉각을 위한 적층형 히트싱크의 방열 특성 연구)

  • Lee, Kyu-Chill;Kim, Joung-Ha;Yun, Jae-Ho;Park, Sang-Il;Choi, Yun-Ho;Kwon, Oh-Kyung
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.182-187
    • /
    • 2006
  • This research presented the heat resistance characteristics of heat sink which is newly designed through the experiment. For the same volume and base plate of heat sinks, the experiment of heat transfer characteristics was conducted for forced convection of layered type heat sink. The heat transfer and pressure drop characteristics of the layered type heat sink were compared for the various kinds of fin pitches, fin heights and heights of heat sink. The results show that thermal resistance is decreased as the height of heat sink increases and the fin height and fin pitch decrease, From the experimental data of layered type heat sink, the correlation equation of Nusselt number was obtained as follows ; $$Nu=0.845{\cdot}Re^{0.393}{\cdot}(\frac{f_h}{D_h})^{0.160}{\cdot}(\frac{f_p}{D_h})^{0.372}{\cdot}(\frac{H_{hs}}{D_h})^{-0.942}$$

  • PDF