• 제목/요약/키워드: Thermal dissipation

검색결과 413건 처리시간 0.023초

공기저어널 베어링에서 저어널의 고속회전시 공기유막내의 열발생에 관한 연구 (A study on the heat generation into air film as rotating of high speed journal in the air journal bearing)

  • 이종열;성승학;이득우;박보선;김태영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.82-86
    • /
    • 2002
  • The thermal characteristics of high-speed air spindle system with built-in motor are studied. Experiment and finite difference method analysis obtain temperature rise and temperature distribution of housing. For the analysis, air fluid film model is built and temperature rise and distribution in thermal steady state are computed for each rotational speed. Generally, it is said that the heat generation of air bearing is negligible. But the heat generation in air film by heat dissipation can not be negligible especially into high-speed region of the journal. In case that the heat generation of air spindle system is high, natural frequency of the spindle system becomes lower when the thermal state is in steady-state and it means the changes of air bearing stiffness due to the change of bearing clearance. It is shown that the temperature rise of air spindle system causes thermal expansion and induces the variation of bearing clearance. In consequence the stiffness of air bearing becomes smaller.

  • PDF

흑연 함량에 따른 알루미늄 기지 복합재료의 방전플라즈마소결 거동 및 방열 특성 (Spark Plasma Sintering Behavior and Heat Dissipation Characteristics of the Aluminum Matrix Composite Materials with the Contents of Graphite)

  • 권한상;박재홍;주성욱;홍상휘;문지훈
    • 한국분말재료학회지
    • /
    • 제23권3호
    • /
    • pp.195-201
    • /
    • 2016
  • Composite materials consisting of pure aluminum matrix reinforced with different amounts of graphite particles are successfully fabricated by mechanical ball milling and spark plasma sintering (SPS) processes. The shrinkage rates of the composite powders vary with the amount of graphite particles and the lowest shrinkage value is observed for the composite with the highest amount of graphite particles. The current slopes of time increase with increase in the amount of graphite particles whereas the current slopes of temperature show the opposite trend. The highest thermal conductivity is achieved for the composite with the least amount of graphite particles. Therefore, the thermal properties of the composite materials can be controlled by controlling the amount of the graphite particles during the SPS process.

전자레인지용 고압다이오드의 방열특성 (Heat Dissipation Analysis of High Voltage Diode Package for Microwave oven)

  • 김상철;김남균;방욱;서길수;문성주;오방원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.205-208
    • /
    • 2001
  • Steady state and transient thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage for microwave oven. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally copper wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin and epoxy with a thickness of $25{\mu}m$ and $3700{\mu}m$, respectively. The chip size, thickness and material properties were very important factor for high voltage diode package. And also, thermal stress value was highest in the edge of diode and solder. So, design of edge in silicon was very important to thermal stress.

  • PDF

Local transport properties of coated conductors by laser-scan imaging methods

  • Kim, Gracia;Jo, William;Nam, Dahyun;Cheong, Hyeonsik;Moon, Seoung Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제18권2호
    • /
    • pp.1-4
    • /
    • 2016
  • To observe the superconducting current and structural properties of high critical temperature ($T_c$) superconductors (HTS), we suggest the following imaging methods: Room temperature imaging (RTI) through thermal heating, low-temperature bolometric microscopy (LTBM) and Raman scattering imaging. RTI and LTBM images visualize thermal-electric voltages as different thermal gradients at room temperature (RT) and superconducting current dissipation at near-$T_c$, respectively. Using RTI, we can obtain structural information about the surface uniformity and positions of impurities. LTBM images show the flux flow in two dimensions as a function of the local critical currents. Raman imaging is transformed from Raman survey spectra in particular areas, and the Raman vibration modes can be combined. Raman imaging can quantify the vibration modes of the areas. Therefore, we demonstrate the spatial transport properties of superconducting materials by combining the results. In addition, this enables visualization of the effect of current flow on the distribution of impurities in a uniform superconducting crystalline material. These imaging methods facilitate direct examination of the local properties of superconducting materials and wires.

CAE 기법을 이용한 1 DIN Car DVD Receiver 의 열설계 (Thermal Design of 1 DIN Car DVD Receiver Using CAE Technique)

  • 류호철;김광모;박정응;김외열;이진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1231-1236
    • /
    • 2004
  • In the present work, the practical thermal design process of 1 DIN car DVD receiver described. In the course of its efficient design, CAE technique was essentially used. CAE technique has reduced research period, man power and material cost but has increased research convenience, organized results and persuasive power. CAE technique helped to study parameters such as vent, fan and heat sink. Using these elements, it tried to meet optimal thermal solution. But safety standard, printed circuit board and framework mechanism should be considered as the constraint. To overcome these constraints, we tried to communicate and compromise with projectors in charge. After all, the price of those efforts has made the most competitive heat sink for heat dissipation in the 1 DIN car DVD receiver market. Moreover, we are trying to save $3 per product by removing fan. This paper is supposed to show an example of the CAE technique and help thermal designers to make electronic packaging goods.

  • PDF

전자레인지용 고압다이오드의 방열특성 (Heat Dissipation Analysis of High Voltage Diode Package for Microwave oven)

  • 김상철;김남균;방욱;서길수;문성주;오방원
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.205-208
    • /
    • 2001
  • Steady state and transient thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage for microwave oven. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally copper wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin and epoxy with a thickness of 25$\mu\textrm{m}$ and 3,700$\mu\textrm{m}$, respectively. The chip size, thickness and material properties were very important factor for high voltage diode package. And also, thermal stress value was highest in the edge of diode and solder. So, design of edge in silicon was very important to thermal stress.

  • PDF

알루미늄 양극산화를 사용한 LED COB 패키지 (ED COB Package Using Aluminum Anodization)

  • 김문정
    • 한국산학기술학회논문지
    • /
    • 제13권10호
    • /
    • pp.4757-4761
    • /
    • 2012
  • 알루미늄 기판 및 양극산화 공정을 사용하여 LED Chip on Board(COB) 패키지를 제작하였다. 선택적 양극산화 공정을 적용하여 알루미늄 기판 상에 알루미나를 형성하고 이를 COB 패키지 절연층으로 사용하였으며, 비아홀 내부가 충진된 구조의 Thermal Via를 구현하였다. 패키지 기판 종류에 따른 열저항 및 발광효율 변화를 파악하기 위해 알루미늄 기판과 알루미나 기판을 제작하고 이를 각각 비교 분석하였다. Thermal Via가 적용된 알루미늄 기판이 51%의 열저항 개선 및 14%의 발광효율 향상 특성을 보여주었다. 이러한 결과는 선택적 양극산화 공정 및 Thermal Via 구조적용으로 COB 패키지의 방열 특성이 향상되었음을 의미한다. 또한 동일한 전력 소모시 LED 칩 개수에 따른 COB 패키지의 열저항 및 발광효율 변화를 분석함으로써 다수 칩의 효율적인 배치가 열저항 및 발광효율을 증가시킬 수 있음을 확인하였다.

12kV급 다이오드의 패키징 구조에 따른 방열 특성 연구 (Heat Dissipation Analysis of 12kV Diode by the Packaging Structure)

  • 김남균;김상철;방욱;송근호;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.1092-1095
    • /
    • 2001
  • Steady state thermal analysis has been done by a finite element method in a diode of 12kV blocking voltage. The diode was fabricated by soldering ten pieces of 1200V diodes in series, capping a dummy wafer at the far end of diode series, and finally wire bonded for building anode and cathode terminal. In order to achieve high voltage and reliability, the edge of each diode was beveled and passivated by resin with a thickness of 25${\mu}$m. It was assumed that the generated heat which is mainly by the on-state voltage drop, 9V for 12kV diode, is dissipated by way of the conduction through diodes layers to bonding wire and of the convection at the surface of passivating resin. It was predicted by the thermal analysis that the temperature rise of a pn junction of the 12kV diode can reach at the range of 16∼34$^{\circ}C$ under the given boundary conditions. The thickness and thermal conductivity(0.3∼3W/m-K) of the passivating resin did little effect to lower thermal resistance of the diode. As the length of the bonding wire increased, which means the distance of heat conduction path became longer, the thermal resistance increased considerably. The thermal analysis results imply that the generated heat of the diode is dissipated mainly by the conduction through the route of diode-dummy wafer-bonding wire, which suggests to minimize the length of the wire for the lowest thermal resistance.

  • PDF

전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석 (Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit)

  • 서일웅;이영호;김영훈;좌성훈
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated gate bipolar transistor (IGBT) 소자는 전동차, 항공기 및 전기 자동차에 가장 많이 사용되는 고전압, 고전력용 전력 반도체이다. 그러나 IGBT 전력소자는 동작 시 발열 온도가 매우 높고, 이로 인해, IGBT 소자의 신뢰성 및 성능에 큰 영향을 미치고 있다. 따라서 발열 문제를 해결하기 위한 IGBT 모듈 패키지의 방열 설계는 매우 핵심적인 기술이며, 특히, 소자가 동작 한계 온도에 올라가지 않도록 방열 설계를 적절히 수행하여야 한다. 본 논문에서는 전동차에 사용되는 1200 A, 3.3 kV 급 IGBT 모듈 패키지의 열 특성에 대해 수치해석을 이용하여 분석하였다. IGBT 모듈 패키지에 사용되는 다양한 재료 및 소재의 두께에 대한 영향을 분석하였으며, 실험계획법을 이용한 최적화 설계를 수행하였다. 이를 통하여 열 저항을 최소화하기 위한 최적의 방열 설계 가이드 라인을 제시하고자 하였다.

Thermal properties of glass-ceramics made with zircon and diopside powders

  • Lee, Dayoung;Kang, Seunggu
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.504-508
    • /
    • 2018
  • Diopside is a ceramic material with excellent physical and chemical properties. However, when it is applied as an LED packaging material, heat dissipation of the LED element is not sufficient due to its relatively lower thermal conductivity, which may cause degradation of the LED function. In this study, glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system, in which diopside is the main crystal phase, were prepared by heat-treating the glass, which was composed of zircon ($ZrO_2-SiO_2$) powders and diopside ($CaO-MgO-2SiO_2$) powders. The possibility of using the glass-ceramics as a packaging material for LEDs was then investigated by analyzing the density, shrinkage, thermal conductivity, and phases generated according to the amount of zircon powder added. The density and shrinkage of specimens decreased slightly and then increased again with the amount of $ZrO_2-SiO_2$ added within a range of 0~0.38 mol. Even though the crystal phase of zircon does not appear in the $ZrO_2-CaO-MgO-SiO_2$ system, the glass containing 0.38 mol zircon powder showed the highest thermal conductivity, 1.85 W/mK, among the specimens fabricated in this study: this value was about 23% higher than that of pure diopside. It was found that the thermal conductivity of the glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system was closely related to the density, but not to the phase type. Zirconia ($ZrO_2$), a component oxide of zircon, plays an important role in increasing the density of the specimen. Furthermore the thermal conductivity of glass-ceramics based on a $ZrO_2-CaO-MgO-SiO_2$ system showed a nearly linear relationship with thermal diffusivity.