• Title/Summary/Keyword: Thermal desorption spectroscopy

Search Result 35, Processing Time 0.029 seconds

Surface Structures and Thermal Desorption Behaviors of Cyclopentanethiol Self-Assembled Monolayers on Au(111)

  • Kang, Hun-Gu;Kim, You-Young;Park, Tae-Sun;Park, Joon-B.;Ito, Eisuke;Hara, Masahiko;Noh, Jae-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.4
    • /
    • pp.1253-1257
    • /
    • 2011
  • The surface structures, adsorption conditions, and thermal desorption behaviors of cyclopentanethiol (CPT) self-assembled monolayers (SAMs) on Au(111) were investigated by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and thermal desorption spectroscopy (TDS). STM imaging revealed that although the adsorption of CPT on Au(111) at room temperature generates disordered SAMs, CPT molecules at $50^{\circ}C$ formed well-ordered SAMs with a $(2{\surd}3{\times}{\surd}5)R41^{\circ}$ packing structure. XPS measurements showed that CPT SAMs at room temperature were formed via chemical reactions between the sulfur atoms and gold surfaces. TDS measurements showed two dominant TD peaks for the decomposed fragments ($C_5H_9^+$, m/e = 69) generated via C-S bond cleavage and the parent molecular species ($C_5H_9SH^+$, m/e = 102) derived from a recombination of the chemisorbed thiolates and hydrogen atoms near 440 K. Interestingly, dimerization of sulfur atoms in n-alkanethiol SAMs usually occurs during thermal desorption and the same reaction did not happen for CPT SAMs, which may be due to the steric hindrance of cyclic rings of the CPT molecules. In this study, we demonstrated that the alicyclic ring of organic thiols strongly affected the surface structure and thermal desorption behavior of SAMs, thus providing a good method for controlling chemical and physical properties of organic thiol SAMs.

CO Adsorption on Mo(110) Studied Using Thermal Desorption Spectroscopy (TDS) and Ultraviolet Photoelectron Spectroscopy (UPS)

  • Yang, Taek-Seung;Jee, Hae-geun;Boo, Jin-Hyo;Kim, Young-Dok;Lee, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1353-1356
    • /
    • 2009
  • This study examined the adsorption of CO on a Mo(110) surface by Thermal Desorption Spectroscopy (TDS) and synchrotron-radiation based photoemission spectroscopy (SRPES). CO desorption was observed at approximately 400 K ($\alpha$-CO) and > 900 K ($\beta$-CO). When CO was exposed to Mo(110) at 100 K, it showed a tilted structure at low CO coverage and a vertical structure after saturation of the tilted CO. After heating the CO-precovered sample to 900 K, a broad peak at 12 eV below the Fermi level was identified in the valence level spectra, which was assigned to either the 4$\sigma$-molecular orbital of CO, or 2s of dissociated carbon. TDS results of the $\beta$-CO showed a first order desorption. These results are in a good agreement with the observations of CO adsorption on W(110) surfaces.

Influence of Surface Morphology and Substrate on Thermal Stability and Desorption Behavior of Octanethiol Self-Assembled Monolayers

  • Ito, Eisuke;Gang, Hun-Gu;Ito, Hiromi;Hara, Masahiko;No, Jae-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.219-219
    • /
    • 2012
  • The formation and thermal desorption behaviors of octanethiol (OT) SAMs on single crystalline Au (111) and polycrystalline Au, Ag, and Cu substrates were examined by X-ray photoelectron microscopy (XPS), thermal desorption spectroscopy (TDS), and contact angle (CA) measurements. XPS and CA measurements revealed that the adsorption of octanethiol (OT) molecules on these metals led to the formation of chemisorbed self-assembled monolayers (SAMs). Three main desorption fragments for dioctyl disulfide (C8SSC8+, dimer), octanethiolate (C8S+), and octanethiol (C8SH+) were monitored using TDS to understand the effects of surface morphology and the nature of metal substrates on the thermal desorption behavior of alkanethiols. TDS measurements showed that a sharp dimer peak with a very strong intensity on single crystalline Au (111) surface was dominantly observed at 370 K, whereas a broad peak on the polycrystalline Au surface was observed at 405 K. On the other hand, desorption behaviors of octanethiolates and octanethiols were quite similar. We concluded that substrate morphology strongly affects the dimerization process of alkanethiolates on Au surfaces. We also found that desorption intensity of the dimer is in the order of Au>>Ag>Cu, suggesting that the dimerization process occurs efficiently when the sulfur-metal bond has a more covalent character (Au) rather than an ionic character (Ag and Cu).

  • PDF

Adsorption properties of MgO protective layer in AC PDP

  • Manakhov, Anton;Nikishin, Nikolay;Hur, Min;Heo, Eun--Gi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.384-387
    • /
    • 2008
  • We have studied the adsorption of contaminations on the MgO protective layer by Thermal Desorption Spectrometry (TDS). The result shows that the increase in exposure time, MgO thickness and humidity multiply the quantity of adsorbed contaminations. It is also found that the desorption activation energy and contamination quantity is decreased by the additional firing process of MgO layer under oxygen environment.

  • PDF

Thr Adsorption and Decomposition of NO on a Stepped Pt(111) Surface

  • Lee, S. B.;Kang, D. H.;Park, C. Y.;Kwak, H. T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.157-163
    • /
    • 1995
  • The adsorption and decomposition of NO on a stepped Pt(111) surface have been studied using thermal desorption spectroscopy and Auger electron spectroscopy. NO adsorbs molecularly in two different states of the terrace and the step, which are distinguishable in thermal desorption spectra. NO dissociates via a bent species at the step sites on the basis of vibrational spectrum data reported previously. The dissociation of NO is an activation process : the activation energy is estimated to be about 2 kcal/mol. Increase in the NO dissociation with adsorption temperature is explained by a process controlled by diffusion of the dissociated atomic nitrogen from the step to the terrace of the surface. In addition to NO and N2, the desorption peak of N2O is observed. We conclude that the formation of N2O is attributed to surface reaction of NO and N adsorbed on the surface.

Outgassing and thermal desorption measurement system for parts of CRT (CRT 부품용 탈가스 및 Thermal Desorption 측정장치 개발)

  • Sin, Yong Hyeon;Hong, Seung Su;Mun, Seong Ju;Seo, Il Hwan;Jeong, Gwang Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.298-307
    • /
    • 1997
  • TDS(Thermal Desorption Spectroscopy)system, for diagnosis of CRT manufacturing process, was designed and constructed. Outgassings and thermal desorptions from the part or materials of CRT can be measured and analysed with this system at various temperatures. The system is consisted of 3 parts, vacuum chamber and pumping system with variable conductance, sample heating stages & their controller, and outgassing measurement devices, like as ion gauge or quadrupole mass spectrometer. The ultimate pressure of the system was under $1{\times}10^{-7}$ Pa. With the variable conductance system, the effective pumping speed of the chamber could be controlled from sub l/s to 100 l/s. The effective pumping speed values were determined by dynamic flow measurement principle. The temperatures and ramp rate of sample were controlled by tungsten heater and PID controller up to 600℃ within ±1℃ difference to setting value. Ion gauge & QMS were calibrated for quantitative measurements. Some examples of TDS measurement data and application on the CRT process analysis were shown.

  • PDF

Adsorption and Desorption of CO on W(110) Surfaces

  • Yang, Taek-seung;Jee, Hae-geun;Boo, Jin-Hyo;Han, Hyun-Seok;Lee, Gyung-Hee;Kim, Young-Dok;Lee, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.1115-1120
    • /
    • 2008
  • The adsorption of CO on W(110) surfaces was studied using thermal desorption spectroscopy (TDS), and core and valence level spectroscopy. At 120 K, CO forms a tilted structure at lower coverages ($\alpha$ 1), whereas it adsorbs normal to the surface at higher coverages ($\alpha$ 2). Tilted structures have been suggested to be precursors of dissociative chemisorption; however, experimental evidence is provided for the non-dissociative chemisorption of CO at temperatures above 900 K (which is referred to as the $\beta$ -state): TDS shows first order desorption kinetics. The core and valence level spectra of O/W(110) and those of $\beta$ -CO/W(110) are different. Most importantly, the 4$\sigma$ molecular orbital of CO can be identified in the valence level spectra of the $\beta$ -CO.

Hydrogen Storage in Ni Nanoparticles-Dispersed Multiwall Carbon Nanotubes (Ni Nanoparticles이 doping된 Multiwall Carbon Nanotubes의 수소저장 특성에 관한 연구)

  • Lee, Ho;Kim, Jin-Ho;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.74-82
    • /
    • 2002
  • Ni nanoparticles이 표면에 분산된 mutiwall carbon nanotubes (MWNTs)의 수소저장 특성을 분석하였다. Metal nanoparticles의 분산 방법은 incipient wetness impregnation procedure을 사용하였는데, 이러한 Ni catalysts의 역할은 기존에 알려진 Li, K doping과 같은 개념으로 기상의 수소를 분해하여 carbon 표면에 chemical adsorption 시키는 역할을 하게 된다. 실제로 Ni nanoparticles이 6wt% loading된 경우에는 thermal desorption spectra를 분석한 결과 ~2.8wt% hydrogen이 ~340-520K의 온도범위에서 방출되는 것을 관찰할 수 있었다. Kissingers plot을 통해서 MWNTs와 hydrogen과 interaction energy를 구한 결과 ${\sim}31kJ/molH_2$를 얻을 수 있었으며 이 값은 기존의 SWNTs에 hydrogen이 physi-sorption에서 실험적으로 얻을 수 있었던 값보다 1.5배 큰 값이라고 할 수 있다. 자세한 수소저장 기구를 분석하기 위해서 FT-IR분석을 한 결과 C-Hn stretching vibrations이 관찰되었으며 mono-hydride와 weak di-hydride $sp^3$가 형성된 것으로 해석 될 수 있었다. 이와 같은 결과는 Ni nanoparticle들이 예상과 같이 hydrogen molecules을 dissociation하는 역할을 하는 것을 의미한다. 연속적인 thermal desorption 실험을 통해 가역성도 평가하였다.

The Effect of Defect Sites on the Dissociation of NO on PT(111) Surface

  • 부진효;강용철;송명철;박종윤;곽현태;이순보
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.404-409
    • /
    • 1993
  • Adorption of nitric oxide on the Pt(III) surface sputtered by Ar-ion has been studied using thermal desorption spectroscopy and Auger electron spectroscopy. Ar-ion sputtering creates a precursor state of ($NO\beta$ stage) adsorbe dat defect sites. The precursor state is characterized by the terminal bent species . At low coverge mos 샐 adsorbed NO dissociates . And as increasing the coverage, the fraction of dissociation remains about 80%.

  • PDF

Platinum Model Catalysts Dispersed on Alumina with Regular Pores (규칙적 세공을 가진 알루미나에 분산된 백금 모형촉매)

  • 윤천호;임헌성
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.261-265
    • /
    • 2000
  • Geometrically and chemically well defined Pt/alumina model catalysts have been prepared. To this end, we fabricated electrochemically alumina supports in which pores of constant size, length and shape were regularly distributed over a wide area of the surface. Platinum particles were dispersed on the pore surfaces via organometallic chemical vapor deposition technique using (trimethyl) methylcyclopentadienylplatinum (IV) as a precursor. The chemical composition of the alumina plane surfaces was examined by Auger electron spectroscopy and the adsorption characteristics of the platinum particles were studied by thermal desorption spectroscopy. A variety of industrial catalytic problems are now open for further investigation utilizing the Pt/alumina model catalysts.

  • PDF