• 제목/요약/키워드: Thermal design

검색결과 4,485건 처리시간 0.037초

통신방송위성 Ka-대역 기술인증모델 탑재체의 열진공시험을 위한 MGSE 패널 열설계 (Thermal Design of MGSE Panel for Thermal Vacuum Test of Ka-band Engineering Qualification Model Payload of Communications and Broadcasting Satellite)

  • 김정훈;최성봉;양군호
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.96-102
    • /
    • 2003
  • 통신방송위성 Ka-대역 기술인증모델(EQM)탑재체의 열진공시험을 위한 기계지상지원장비 패널의 열설계를 수행하고 열진공 챔버내에서의 성능시험을 위한 열환경을 수치적 방법으로 예측하였다. 탑재체 패널의 히트파이프 배열 설계 검증을 위한 열해석은 SINDA를 사용하였다. 개발된 16개 히트파이트 배열은 Ka-대역 중계기 전장품들의 성능시험을 위해 적절하게 설계되었다. 고온 성능시험은 패널 외부 면재에 가해지는 열유속이 265W/㎡ 일 때 수행되고, 저온 성능시험은 패널 외부로부터 열유입이 없을 때 수행된다. 히트파이프의 최대 열수송 용량은 2723 W-cm로 예측되었다.

이중막 구조를 적용한 우주용 전개형 메쉬 안테나의 열적 특성 분석 (Thermal Characteristics Investigation of Spaceborne Mesh Antenna with Dual-parabolic Surfaces)

  • 김혜인;채봉건;오현웅
    • 항공우주시스템공학회지
    • /
    • 제16권5호
    • /
    • pp.86-93
    • /
    • 2022
  • 우주용 전개형 메쉬 안테나는 궤도 운용 시 RF 성능을 보장하기 위해 극한의 궤도 열 환경 하에서 극심한 온도변화에 의한 열변형을 최소화할 수 있는 열설계가 필수적이다. 일반적으로 궤도 상에서 전력 생성을 위해 전개형 태양전지판이 주로 적용되고 있으나, 태양전지판으로 인한 그림자로 인해 안테나 표면에 극심한 온도구배가 발생할 수 있다. 본 논문에서는 전개형 메쉬 안테나 후면부에 멤브레인 시트를 적용하고, 시트 후면부에 유연 태양전지셀을 부착하여 전개형 태양전지판으로 인한 온도구배를 최소화할 수 있는 이중막 구조의 설계 방식을 제안하였다. 제안된 안테나 열설계의 유효성을 검증하기 위해 궤도 열해석을 통해 안테나 표면에서 발생하는 온도구배 분석을 수행하였다.

수직형 지열 열교환기(BHE)의 열성능 측정에 관한 실험적 연구 (An Experimental Study on the Thermal Performance Measurement of Vertical Borehole Heat Exchanger(BHE))

  • 임경빈;이상훈;성낙원;이창희
    • 대한기계학회논문집B
    • /
    • 제30권8호
    • /
    • pp.764-771
    • /
    • 2006
  • Knowledge of ground thermal properties is most important for the proper design of large BHE(borehole heat exchanger) systems. Thermal response tests with mobile measurement devices were first introduced in Sweden and USA in 1995. Thermal response tests have so far been used primarily for in insitu determination of design data for BHE systems, but also for evaluation of grout material, heat exchanger types and ground water effects. The main purpose has been to determine insitu values of effective ground thermal conductivity, including the effect of ground-water flow and natural convection in the boreholes. Test rig is set up on a small trailer, and contains a circulation pump, a heater, temperature sensors and a data logger for recording the temperature data. A constant heat power is injected into the borehole through the pipe system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance.

Experimental Investigations for Thermal Mutual Evaluation in Multi-Chip Modules

  • Ayadi, Moez;Bouguezzi, Sihem;Ghariani, Moez;Neji, Rafik
    • Journal of Power Electronics
    • /
    • 제14권6호
    • /
    • pp.1345-1356
    • /
    • 2014
  • The thermal behavior of power modules is an important criterion for the design of cooling systems and optimum thermal structure of these modules. An important consideration for high power and high frequency design is the spacing between semiconductor devices, substrate structure and influence of the boundary condition in the case. This study focuses on the thermal behavior of hybrid power modules to establish a simplified method that allows temperature estimation in different module components without decapsulation. This study resulted in a correction of the junction temperature values estimated from the transient thermal impedance of each component operating alone. The corrections depend on mutual thermal coupling between different chips of the hybrid structure. A new experimental technique for thermal mutual evaluation is presented. Notably, the classic analysis of thermal phenomena in these structures, which was independent of dissipated power magnitude and boundary conditions in the case, is incorrect.

Thermal Analysis and Optimization of 6.4 W Si-Based Multichip LED Packaged Module

  • Chuluunbaatar, Zorigt;Kim, Nam Young
    • 한국통신학회논문지
    • /
    • 제39C권3호
    • /
    • pp.234-238
    • /
    • 2014
  • Multichip packaging was achieved the best solution to significantly reduce thermal resistance at the same time, to increase luminance intensity in LEDs packaging application. For the packaging, thermal spreading resistance is an important parameter to get influence the total thermal performance of LEDs. In this study, silicon-based multichip light emitting diodes (LEDs) packaged module has been examined for thermal characteristics in several parameters. Compared to the general conventional single LED packaged chip module, multichip LED packaged module has many advantages of low cost, low density, small size, and low thermal resistance. This analyzed module is comprised of multichip LED array, which consists of 32 LED packaged chips with supplement power of 0.2 W at every single chip. To realize the extent of thermal distribution, the computer-aided design model of 6.4 W Si-based multichip LED module was designed and was performed by the simulation basis of actual fabrication flow. The impact of thermal distribution is analyzed in alternative ways both optimizing numbers of fins and the thickness of that heatsink. In addition, a thermal resistance model was designed and derived from analytical theory. The optimum simulation results satisfies the expectations of the design goal and the measurement of IR camera results. tart after striking space key 2 times.

Impact of standard construction specification on thermal comfort in UK dwellings

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • 제3권3호
    • /
    • pp.253-281
    • /
    • 2014
  • The quest for enhanced thermal comfort for dwellings encompasses the holistic utilization of improved building fabric, impact of weather variation and amongst passive cooling design consideration the provision of appropriate ventilation and shading strategy. Whilst thermal comfort is prime to dwellings considerations, limited research has been done in this area with the attention focused mostly on non-dwellings. This paper examines the current and future thermal comfort implications of four different standard construction specifications which show a progressive increase in thermal mass and airtightness and is underpinned by the newly developed CIBSE adaptive thermal comfort method for assessing the risk of overheating in naturally ventilated dwellings. Interactive investigation on the impact of building fabric variation, natural ventilation scenarios, external shading and varying occupants' characteristics to analyse dwellings thermal comfort based on non-heating season of current and future weather patterns of London and Birmingham is conducted. The overheating analysis focus on the whole building and individual zones. The findings from the thermal analysis simulation are illustrated graphically coupled with statistical analysis of data collected from the simulation. The results indicate that, judicious integrated approach of improved design options could substantially reduce the operating temperatures in dwellings and enhance thermal comfort.

Experimental analysis of thermal gradient in concrete box girder bridges and effects of polyurethane insulation in thermal loads reduction

  • Raeesi, Farzad;Heydari, Sajad;Veladi, Hedayat
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.645-654
    • /
    • 2022
  • Environmental thermal loads such as vertical and lateral temperature gradients are significant factors that must be taken into account when designing the bridge. Different models have been developed and used by countries for simulating thermal gradients in bridge codes. In most of the codes only vertical temperature gradients are considered, such as Iranian Standard Loads for Bridge code (ISLB), which only considers the vertical gradient for bridge design proposes. On the other hand, the vertical gradient profile specified in ISLB, has many lacks due to the diversity of climate in Iran, and only one vertical gradient profile is defined for whole Iran. This paper aims to get the both vertical and lateral gradient loads for the concrete box girder using experimental analysis in the capital of Iran, Tehran. To fulfill this aim, thermocouples are installed in experimental concrete segment and temperatures in different location of the segment are recorded. A three dimensional finite element model of concrete box-girder bridge is constructed to study the effects of thermal loads. Results of investigation proved that the effects of thermal loads are not negligible, and must be considered in design processes. Moreover, a solution for reducing the negative effects of thermal gradients in bridges is proposed. Results of the simulation show that using one layer polyurethane insulation can significantly reduce the thermal gradients and thermal stresses.

고속 운전조건을 고려한 하이브리드 자동차용 ISG 모터 방열설계 및 해석 평가 (Thermal Design and Analysis Evaluation of ISG Motor for Hybrid Electric Vehicles considering High-speed Driving Condition)

  • 김성철
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.59-64
    • /
    • 2014
  • Integrated Starter Generator (ISG) system improves the fuel economy of hybrid electric vehicles by using idle stop and go function, and regenerative braking system. To obtain the high performance and durability of ISG motor under continuously high load condition, the motor needs to properly design the cooling system (cooling fan and cooling structure). In this study, we suggested the enhanced design by modifying the thermal design of the ISG motor and then analyzed the improvement of the cooling performance under high-speed condition and generating mode by CFD simulation. The temperatures at the coil and the magnet of the enhanced model were decreased by about $4^{\circ}C$ and $6^{\circ}C$, respectively, compared to those of the conventional model. Therefore, we verified the cooling performance enhancement of the novel thermal design in the case of core loss increment due to the higher speed condition.

고온 고효율 냉각터빈 개발을 위한 냉각 설계 기술 (Turbine Cooling Design for the Development of High Efficiency Cooling Turbine)

  • 조형희;김경민;박준수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.675-676
    • /
    • 2011
  • 가스터빈의 효율 향상 및 허용수명과 안정성 확보를 위해서는 고온부품에 대한 효과적인 냉각기술 개발이 필수적이다. 냉각시스템을 설계하기 위해서는 다양한 냉각방식에 대한 기초적인 연구뿐만 아니라, 이에 대한 이해를 기반으로 실제 조건에 대한 치밀한 해석이 필요하다. 해석 결과를 토대로 열적 응력 및 예상 수명을 예측 할 수 있다. 이와 같은 일련의 설계 작업을 열설계기술이라 하며, 열설계기술은 가스터빈의 성능 향상은 물론 독자적인 설계 및 개발을 위해 필요한 핵심 요소설계기술 중 하나이다.

  • PDF

히트파이프와 용융염을 사용하는 태양열 축열조의 설계 (Design of a Solar Thermal Storage System Employing Heat Pipes and Molten Salts)

  • 이정륜;부준홍
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.86-91
    • /
    • 2011
  • Thermal design was conducted for a solar thermal storage system in a medium-temperature range between $200^{\circ}C$ and $400^{\circ}C$. The system was composed of heat pipes as heat carrier and molten salts as phase-change storage material. Each heat pipe penetrated through the storage system and had two heat-exchanging sections at both ends to interact with high-and low-temperature steams, while it exchanged heat with molten salts in the middle section. During a heat-storage mode, the heat pipes transferred heat from the hot steam at one side to the molten salts and it transferred heat from the molten salt to the cold steam at the other side during the heat-dissipating mode. A tube-bank type heat exchanger theory was applied to this design task to meet the required inlet and outlet temperatures of the steams depending on the operation modes. Several design variables were considered including the lengths of evaporator and condenser of a heat pipe, traverse and longitudinal pitches of the pipe, and the number of rows of the heat pipes for two different molten salt baths. An optimum design results were presented with discussion.

  • PDF