• Title/Summary/Keyword: Thermal design

Search Result 4,485, Processing Time 0.094 seconds

Design and Development Status of a Thermal Protection System for a Spaceplane (우주비행기 열보호 시스템의 설계 및 개발 현황)

  • Yoon, Yong-Sik;Choi, Gi-Hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.79-85
    • /
    • 2018
  • The demand for the development of atmospheric entry vehicles, dealing with reentry and solar-system planet exploration, is increasing. Generally, atmospheric drag and heating accompany the entry into atmospheric air. Accordingly, the selection of the thermal protection materials and the design and application of the thermal protection system are very important. In this paper, the atmospheric entry environment and the type and characteristics of the thermal protection materials are discussed. The design and application status of a thermal protection system for spaceplanes are described.

Thermal Design and Batch Fabrication of Full SiO2 SThM Probes for Sensitivity Improvement (주사탐침열현미경의 감도향상을 위한 전체 실리콘 산화막 열전탐침의 열적설계 및 일괄제작)

  • Jaung, Seung-Pil;Kim, Kyeong-Tae;Won, Jong-Bo;Kwon, Oh-Myoung;Park, Seung-Ho;Choi, Young-Ki;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.10
    • /
    • pp.800-809
    • /
    • 2008
  • Scanning Thermal Microscope (SThM) is the tool that can map out temperature or the thermal property distribution with the highest spatial resolution. Since the local temperature or the thermal property of samples is measured from the extremely small heat transferred through the nanoscale tip-sample contact, improving the sensitivity of SThM probe has always been the key issue. In this study, we develop a new design and fabrication process of SThM probe to improve the sensitivity. The fabrication process is optimized so that cantilevers and tips are made of thermally grown silicon dioxide, which has the lowest thermal conductivity among the materials used in MEMS. The new design allows much higher tip so that heat transfer through the air gap between the sample-probe is reduced further. The position of a reflector is located as far away as possible to minimize the thermal perturbation due to the laser. These full $SiO_2$ SThM probes have much higher sensitivity than that of previous ones.

NUMERICAL ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST REACTOR

  • Choi, Seok-Ki;Lee, Tae-Ho;Kim, Yeong-Il;Hahn, Dohee
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.191-202
    • /
    • 2013
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy may be due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.

A SATELLITE ELECTRONIC EQUIPMENT THERMAL ANALYSIS USING SEMI-EMPERICAL HEAT DISSIPATION METHOD (반실험적 열소산 방법을 이용한 위성용 전장품 열해석)

  • Kim Jung-Hoon;Jun Hyung-Yoll;Yang Koon-Ho
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.32-39
    • /
    • 2006
  • A heat dissipation modeling method of EEE parts is developed for thermal design and analysis of an satellite electronic equipment. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is considered instead of conventional lumped capacity nodes. These modeling methods are applied to the thermal design and analysis of CTU EM and EQM and verified by thermal cycling and vacuum tests.

A Study on the Thermal Specific of Operational Spindle System of Machine Tool by FEM (주축의 동적거동시 FEM을 이용한 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.396-400
    • /
    • 2003
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design condidering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verifiedthe test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective method in thermal-appropriate design..

  • PDF

Mathematical Simulation on Thermal Performance of Packed Bed Solar Energy Storage System (Packed Bed 태양에너지 저장시스템의 열성능에 관한 수학적 시뮬레이션)

  • KUMAR, ANIL;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.4
    • /
    • pp.331-338
    • /
    • 2015
  • Solar air heaters (SAHs) are simple in design and widely used for solar energy collection devices, and a packed bed is one of typical solar energy storage systems of thermal energy captured by SAHs. This paper presents mathematical modeling and simulation on the thermal performance of various packed bed energy storage systems. A MATLAB program is used to estimate the thermal efficiency of packed bed SAH. Among the various packed bed energy storage systems considered, the wire mesh screen packed bed SAH shows the best thermal efficiency over the entire range of design conditions. The maximum of thermal efficiency of packed bed SAH with wire mesh screen matrices has been found to be 0.794 for Re=2000 - 20000 and ${\Delta}T/I=0.002-0.02$.

A Study on the Thermal Distribution Analysis of Operational Spindle System of Machine Tool (공작기계 주축 거동시 온도분포 특성에 관한 연구)

  • 임영철;김종관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.980-984
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design condidering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirm approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective method in thermal-appropriate design.

  • PDF

A Study on the Thermal Specific of Operational Spindle System of Machine Tool (공작기계 주축부 운전시 열적 특성에 관한연구.)

  • 임영철;김종관
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.498-503
    • /
    • 2002
  • This paper has studied thermal characteristics of machine tool to develope high speed spindle and optimum design considering the thermal deformation. Comparing the test data of temperature measurement and structural analysis data using FEM, we verified the test validity and predicted thermal deformation, influence of spindle generation of heat, and established cooling system to prevent the thermal deformation. 1) The temperature rise of spindle system depends on increasing number of rotation and shows sudden doubling increment of number of rotation over 7,000rpm. 2) Oil jacket cooling can be effective cooling method below 8,000rpm but, over 8,000rpm, it shows the decrement of cooling effect. 3) Comparing FEM analysis results and revolution test results, we can confirmn approximate temperature change consequently, it is possible to simulate temperature rise and thermal distribution on the inside of spindle system. 4) We can confirm that simulated approach by FEM analysis can be effective mettled in thermal-appropriate design.

  • PDF

A Study on Thermal Stress of Power Piping due to Loop Design (루프디자인에 따른 배관시스템의 열응력에 관한 연구)

  • Lee, JungHyun;Park, JiSung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2014
  • Domestic power plants have consistently been developed over the years in industrially developed nations with high standards of living. Considering the power plant development strategy, design efficiency is of upmost importance. Therefore, an improper design directly affects the power plant's risk management plan and the potential risks of the piping system. Therefore, in this study, research is intended to be carried out to allow efficient power plant operation, through optimization of the design of the piping system. The purpose of the study is to confirm economic feasibility by changing the piping loop design, expanding the length of pipe loops, and to investigate the thermal stress influence on the piping system through simulations of systems similar in condition to those currently used in existing plants in Korea.

An analysis of the Design heating load calculation in multi-family houses (공동주택 최대난방부하 계산법의 분석)

  • 조동우
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Design load calculations which depend on the thermal characteristics of the building structure such as the wall, roof, and fenestration provide the basic data for selecting an HVAC system and its equipment. Most of domestic multi-family houses include a high thermal storage layer like massive concrete structure and a floor heating structure. This study is to compare the results of the design heating load between steady state and unsteady state calculation in order to comprehend the thermal storage effect in multi-family houses. The design heating load under the steady state calculation is estimated from 5.4% to 7.8% larger than that under the unsteady state in the typical floor of a multi-family house model. The design heating load considered the safety factors like a orientation and location factor also is 21.4% to 26.5% larger than that by the unsteady state calculation. So, the safety factors for use of the practicing engineer are analyzed as the main factor of a heating plant oversizing.

  • PDF