• Title/Summary/Keyword: Thermal degradation oil

Search Result 59, Processing Time 0.025 seconds

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Numerical investigation of the high pressure selective catalytic reduction system impact on marine two-stroke diesel engines

  • Lu, Daoyi;Theotokatos, Gerasimos;Zhang, Jundong;Tang, Yuanyuan;Gan, Huibing;Liu, Qingjiang;Ren, Tiebing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.659-673
    • /
    • 2021
  • This study aims to investigate the impact of the High Pressure Selective Catalytic Reduction system (SCR-HP) on a large marine two-stroke engine performance parameters by employing thermodynamic modelling. A coupled model of the zero-dimensional type is extended to incorporate the modelling of the SCR-HP components and the Control Bypass Valve (CBV) block. This model is employed to simulate several scenarios representing the engine operation at both healthy and degraded conditions considering the compressor fouling and the SCR reactor clogging. The derived results are analysed to quantify the impact of the SCR-HP on the investigated engine performance. The SCR system pressure drop and the cylinder bypass valve flow cause an increase of the engine Specific Fuel Oil Consumption (SFOC) in the range 0.3-2.77 g/kWh. The thermal inertia of the SCR-HP is mainly attributed to the SCR reactor, which causes a delayed turbocharger response. These effects are more pronounced at low engine loads. This study supports the better understanding of the operating characteristics of marine two-stroke diesel engines equipped with the SCR-HP and quantification of the impact of the components degradation on the engine performance.

A Study on the Actual Status of Heat Transfer oils in Industries for Process Safety Management (공정안전관리 사업장의 열매체유 사용실태에 관한 연구)

  • Lee, Keun Won;Lee, Joo Yeob
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.33-39
    • /
    • 2014
  • Heat transfer oils are used in applications such as chemical plant heating systems, refinery heat exchange systems, certain gas processes, injection molding systems, and pulp and paper processing. These oils are extremely stable and resistant to thermal and oxidative degradation. In the event of a spill or accidental release of heat transfer oils, it can be ignited easily when there is an ignition source. This study discusses the status of safety management through the actual status of the heat transfer oils to prevent fire and explosion accidents in industries for process safety management. The actual status of the heat transfer oils in process system of industries surveyed by a questionnaire developed. The results of this study can be used to help establishment of safety management to prevent fire and explosion accidents, such as the management of heat transfer oils, safe operation and maintenance in heat transfer oil processes.

Comparison of Oxidative Stability for the Thermally-oxidized Vegetable Oils using a DPPH Method (DPPH법에 의한 식용유지의 열산화 안정성 비교)

  • Lee, Jae-Min;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.133-137
    • /
    • 2007
  • The 2,2-diphenyl picrylhydrazyl (DPPH) method, which can be used to predict the oxidative stability of edible oils, was previously reported by our research group. Not only free radical scavenging antioxidants but also radicals from oxidized oils are capable of reacting with DPPH radicals, thereby reducing the absorbance of DPPH. In this study, the optimum sample size of edible oils for the DPPH method was determined, and the oxidation of the edible oils was monitored via DPPH, coupled with other conventional methods. The optimum sample size was determined as 1.5 g using soybean oil. Soybean, corn, virgin olive, and refined olive oils were thermally oxidized for 3 hr at $180^{\circ}C$ and analyzed via DPPH, conjugated dienoic acid (CDA) value, and p-anisidine value (p-AV) protocols. Soybean and corn oils were found to be more sensitive to thermal oxidation than virgin and refined olive oils, on the basis of the CDA value and p-AV measurements. The DPPH method can indicate the inherent radical scavenging activity of unoxidized samples, the time required for the depletion of antioxidants, and the rate of degradation of the antioxidants. The soybean and corn oils evidenced higher levels of free radical scavenging compounds, required more time for the consumption of inherent antioxidants, and also manifested steeper antioxidant degradation rates than olive oils, based on the results of DPPH analysis. The DPPH method, accompanied by other conventional methods, may prove useful in predicting the degree of oxidation of vegetable oils.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

Confirming Animal Glue in Dancheong Sample by Pyrolysis/GC/MS (열분해/GC/MS에 의한 재현 단청 시편에서 아교의 확인)

  • Park, Jong Seo;Kim, Mi Jeong;Kim, Soon Kwan
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2016
  • Animal glue is a traditional material used extensively as adhesive and binder in mother-of-pearl, wooden structure, traditional painting, etc. Analysis of animal glue is usually performed with IR(infrared spectroscopy) based on the IR absorption of functional group. But, it has a limitation in confirming animal glue when a sample consists of several materials because of overlapping of the absorption band. Py/GC/MS(pyrolysis/gas chromatography/mass spectrometry) is a useful tool in analyzing the constituent of polymeric materials like animal glue by identifying their pyrolysate with very small amount of sample. In this study, confirmation of animal glue in a Dancheong sample was tried with this method. Characteristic pyrolytic compounds of animal glue and tung oil used in Dancheong were identified. Dancheong sample painted with Noerok as a coloring material, animal glue and tung oil was prepared and it was possible to find characteristic peaks of animal glue after thermal degradation and artificial weathering experiment. From this, we found that animal glue can be detected using py/GC/MS in cultural heritage samples consisting of several materials and in different condition. IR was also tried to analyze Dancheong sample and the results were compared with those of py/GC/MS for the detection of animal glue.

Effect of heat treatment on physicochemical properties of soybean (열처리 방법에 따른 대두의 이화학적 특성 변화)

  • Kim, Sun Hee;Jung, Eun Suk;Kim, So Young;Park, Shin Young;Cho, Yong Sik
    • Food Science and Preservation
    • /
    • v.24 no.6
    • /
    • pp.820-826
    • /
    • 2017
  • Soybean is one of the most common food materials for making traditional Korean foods such as soybean paste, soy source and soy snack, and their manufacturing processes include heat treatment of soybean. This study was carried out to investigate the effect of heat treatment on the physicochemical properties of soybean. All samples were heat treated under commercial steamed, puffed or air-fried conditions, and then the protein molecular weight distribution, thermal properties, fluorescence intensity, protein solubility, and water and oil holding ability of the heat treated soybeans were examined. Sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that heat treatment caused fragmentation of polypeptide chain in soybean, showing the band of low molecular ranging from 17 to 40 kDa. The differential scanning calorimetric analysis showed the decrease of enthalpy values (${\Delta}H$) by heat treatment. Fluorescence spectroscopy indicated that the heat treatment caused lipid oxidation as proved by increasing emission intensity. The protein solubility at pH 3-6, and water holding capacity of heat treated soybeans were the higher than no treatment. These results suggest that the heat treatment resulted in decreased enthalpy values, and increased protein degradation, lipid oxidation and water affinity of soybean. Moreover, the effect of heat treatment on physiochemical properties of soybeans was more significant under air-fried condition.

Volatile Flavor Components in Cooked Black Rice (취반된 흑미의 휘발성 향기 성분)

  • Song, Seon-Joo;Lee, You-Seok;Rhee, Chong-Ouk
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1015-1021
    • /
    • 2000
  • Volatile flavor components (VFCs) in cooked black rices (Suwon-415 and Chindo) were studied. The major reactions during cooking, which result in aroma volatiles, are the Maillard reaction between amino acids and reducing sugars, and thermal degradation of lipid. Black rices washed with water were soaked in 1.5 folds water and heated at $110^{\circ}C$ in oil bath for 30min. VFCs in cooked black rices were extracted for three hours by SDE and were analyzed by GC and GC/MS. A total of 91, 82 volatiles were identified in Suwon-415 and Chindo black rice, respectively. Suwon-415 was composed of 26 alcohols, 10 aldehydes, 5 acids, 11 esters, 15 ketones, 9 hydrocarbons, 3 furans, 3 nitrogen containing compounds and 9 sulfur containing compounds. Chindo was composed of 28 alcohols, 9 aldehydes, 4 acids, 12 esters, 14 ketones, 5 hydrocarbons, 3 furans, 3 nitrogen containing compounds and 4 sulfur containing compounds.

  • PDF

Geochemical characteristics of organic matter in the Tertiary sediments from the JDZ Blocks, offshore Korea (대륙붕 한일공동광구에 분포하는 제 3기 시추 시료 유기물의 지화학적 특성)

  • Lee Youngjoo;Yun Hyesu;Cheong Taejin;Kwak Younghoon;Oh Jaeho
    • The Korean Journal of Petroleum Geology
    • /
    • v.6 no.1_2 s.7
    • /
    • pp.25-36
    • /
    • 1998
  • Organic geochemical analyses were carried out in order to characterize organic matter (OM) in the sediments recovered from Korea/japan Joint Development Zone (JDZ V-1, V-3, VII-1 and VII-2) which is located in the northern end of the East China Sea Shelf Basin. Late Miocene sediments from the JDZ V-1 and V-3 wells generally contain less than $0.5\%$ of total organic carbon (TOC). However, early Miocene and Oligocene sediments show TOC values of $0.6-0.8\%$. Middle to late Miocene sediments are rich in TOC up to $20\%$ from JDZ VII-1 and JDZ VII-2 wells. The reason for this rich TOC might be attributed to the presence of coaly shales. Kerogens in the Tertiary sediments from the JDZ series wells are mainly composed of terrestrially derived woody organic matter. Elemental analyses indicate that OM from these wells can be compared to type III. Low hydrocarbon potential and hydrogen index reflect the type of OM. According to the biomarker analyses, the input of the terrestrial OM is prevalent. Oxidizing condition is also indicated by Pristane/Phytane ratio. Samples from the JDZ V-1 and V-3 wells obtain maturities equivalent to the oil generation zone around total depth, and organic matter below 3600 m from JDZ VII-1 and VII-2 wells reached dry gas generation stage. Oligocene sediments below 3500 m in the JDZ VII-1 and JDZ VII-2 wells may have generated limited amount of hydrocarbons, showing a progressive decrease in hydrogen index with depth, due to thermal degradation with increased burial. Gas shows and finely disseminated gilsonite may indicate the generation and migration of the hydrocarbons.

  • PDF