• Title/Summary/Keyword: Thermal deformation processing

Search Result 89, Processing Time 0.028 seconds

Design and control of the precision heat actuator using thermoelectric device (열전소자를 이용한 정밀 열구동기구의 설계 및 제어)

  • 서장렬;김선민;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.395-398
    • /
    • 1997
  • In the modem manufacturing system, to achieve the unmanned automation, the stability of accuracy is required through a long working period. The thermal deformation of precision machine is predominant in this long time stability. While grinding slender and long workpiece at cylindrical grinding machine, we support workpiece using steadies to prevent the vibration of workpiece. The thermal deformation of the machine by grinding and internal heat source cause processing errors, so the steadies for compensating the thermal deformation in real time are strongly needed. In order to compensate these thermal deformation and grinding processing errors, the device to determine the precise positioning having the stroke of 10.mu.m is necessary. This paper suggests design and make the device to determine the precise positioning using thermoelectric device, to investigate the control characteristics and presents the heat actuator will be very useful in machine tool.

  • PDF

Autonomous Compensation of Thermal Deformation during Long-Time Machining Process (공작기계 장시간 가공중 열변형의 CNC 자율보정 기술)

  • Kim, Dong-Hoon;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.297-301
    • /
    • 2014
  • The biggest factors, which lower the machining accuracy of machine, are thermal deformation and chatter vibration. In this article, we introduce the development case of a device and technology that can automatically compensate thermal deformation errors of machine during long-time processing on the machine tool's CNC (Computerized Numerical Controller) in real time. In machine processing, the data acquisition of temperature signal in real time and auto-compensation of the machine origin of machine tools depending on thermal deformation have significant influence on improving the machining accuracy and the rate of operation. Thus, we attempts to introduce the related contents of the development we have made in this article : The development of a device that embedded the acquisition part of temperature data, linear regression to get compensation value, compensation model of neural network and a system that compensates the machine origin of machine tool automatically during manufacturing process on the CNC.

Implementation of process and surface inspection system for semiconductor wafer stress measurement (반도체 웨이퍼의 스트레스 측정을 위한 공정 및 표면 검사시스템 구현)

  • Cho, Tae-Ik;Oh, Do-Chang
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.8
    • /
    • pp.11-16
    • /
    • 2008
  • In this paper, firstly we made of the rapid thermal processor equipment with the specifically useful structure to measure wafer stress. Secondly we made of the laser interferometry to inspect the wafer surface curvature based on the large deformation theory. And then the wafer surface fringe image was obtained by experiment, and the full field stress distribution of wafer surface comes into view by signal processing with thining and pitch mapping. After wafer was ground by 1mm and polished from the back side to get easily deformation, and it was heated by three to four times thermal treatments at about 1000 degree temperature. Finally the severe deformation between wafer before and after the heat treatment was shown.

Thermal Deformation Simulation of Boron Steel Square Sheet in Fluid Cooling Process (사각판재 보론강을 사용한 유체냉각공정에서의 열변형 해석)

  • Suh, C.H.;Kwon, T.H.;Jeon, H.W.;Oh, S.K.;Park, C.D.;Choi, H.Y.;Moon, W.S.
    • Transactions of Materials Processing
    • /
    • v.26 no.1
    • /
    • pp.5-10
    • /
    • 2017
  • Fluid cooling is one of the manufacturing processes used to control mechanical properties, and is recently used for hot stamping of automobile parts. The formed part at room temperature is heated and then cooled rapidly using various fluids in order to obtain better mechanical properties. The formed part may undergo excessive thermal deformation during rapid cooling. In order to predict the thermal deformation during fluid cooling, a coupled simulation of different fields is needed. In this study, cooling simulation of boron steel square sheet was performed. Material properties for the simulation were calculated from JMatPro, and three convection heat transfer coefficients such as water, oil and air were obtained from the experiments. It was found that the thermal deformation increased when the difference of cooling rate of sheet face increased, and the thermal deformation increased when the thickness of sheet decreased.

Thermal Deformation Measurement of Notched Structure Using Global-local Multi-DIC System (전역-국부 다중 DIC 시스템을 이용한 노치 구조물의 열변형 계측)

  • Xin, Ruihai;Doan, Nguyen Vu;Goo, Nam Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.8
    • /
    • pp.617-626
    • /
    • 2021
  • During supersonic flight of vehicles, the thermal behavior of structures under high-temperature environment is important for thermal-structural design. In this study, full-field thermal deformation and stress concentration of the notched structure was performed using global-local multi-digital image correlation (multi-DIC) systems. This techniques were developed and implemented by multi-DIC systems consists of 2D DIC system and 3D DIC system. The specimen was heated in a heating chamber to achieve the thermal expansion behavior. Then the images of structure's deformation and stress concentration at various temperature were recorded and analyzed by multi-DIC system. Afterward, full-field thermal deformation of the notched structure was determined with DIC technique and stress concentration at the notched structure was calculated by further processing. Finite element analysis of the notched structure is performed in ABAQUSTM and the results of the experiments show good agreement with those obtained from simulation. The results achieved in this study show the efficiency of the muilti-DIC method in thermal deformation as well as stress concentration of notched structure.

Thermal Viscoelastic Analysis of Plastic Part Considering Residual Stress (온도 및 잔류응력을 고려한 플라스틱 부품의 점탄성 해석)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.496-500
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But plastic parts are usually distorted after injection molding due to the residual stress after filling, packing, cooling process, and etc. And plastic material is to be deteriorated according to various temperature conditions and operating time, which can be characterized by stress relaxation and creep. The viscoelastic behavior of plastic materials in time domain can be expressed by the Prony series of the commercial code, ABAQUS. In the paper, the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

Process Design for Improving Tool Life in Hot Forging Process (열간 단조 공정에서 금형 수명 향상을 위한 공정 설계)

  • 이현철;김병민;김광호
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.18-25
    • /
    • 2003
  • This paper explains the process design for improving tool life in the conventional hot forging process. The thermal load and the thermal softening are happened by contact between the hotter billet and the cooler tools in hot forging process. Tool life decreases considerably due to the softening of the surface layer of a tool was caused by a high thermal load and long contact time between the tools and the billet. Also, tool life is to a large extent limited by wear, heat crack and plastic deformation in hot forging process. Above all, the main factors which affect die accuracy and tool life we wear and the plastic deformation of a tool. The newly developed techniques for predicting tool life are applied to estimate the production quantity for a spindle component and these techniques can be applied to improve the tool life in hot forging process.

Influence of High Temperature Deformation Process Variables on the Microstructure and Thermo-physical Properties of a Ni-Fe-Co Alloy (Fe-Ni-Co 합금의 고온 변형 공정 변수와 미세조직 및 열물리적 특성의 상관 관계)

  • Yoon, D.H.;Jung, J.E.;Chang, Y.W.;Lee, J.H.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.207-214
    • /
    • 2012
  • High temperature deformation behavior of a $Ni_{30}Fe_{53}Co_{17}$ alloy, with its extraordinary low coefficient of thermal expansion less than $10{\times}10^{-6}K^{-1}$ at temperatures ranging from room temperature to 673K, was investigated by conducting a series of compression tests. From an empirical processing map, the appropriate working temperature-strain rate combination for optimum forming was deduced to be in the ~1373K, $10^{-2}s^{-1}$ region. This region has a relatively high power dissipation efficiency, greater than 0.36. Furthermore, open die forging of a 100mm diameter billets was performed to confirm the variation of thermo-physical properties in relation to microstructure. The coefficient of thermal expansion was found to increase considerably with increasing the open die forging temperature and decreasing the cooling rate, which in turn provides a drastic increase in the average grain size.

A Study on the Thermal Behaviors of Disk Brake and Pad by Friction Heat (디스크 브레이크와 패드의 마찰열에 의한 열적거동에 관한 연구)

  • Han, Seung-chul
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.12
    • /
    • pp.287-292
    • /
    • 2019
  • This paper analyzes the thermal behaviors of genuine discs used in automobiles and discs coming out of tuning products through FEM analysis. Modeling with genuine disk modeling and tuning disks Model-1, Model-2, Model-3 and analyzing the disk rotation speed was set to 1000rpm. When the brake is operated, the thermal behavior of the disk surface, such as the operating temperature caused by the disk and pad contact, the friction surface temperature after the disk stop, and the thermal deformation, were analyzed. When the brake was activated (0-4.5 seconds), the tuning disk showed 34℃ higher than the original disk, and after the disk stopped (40.5 seconds), the tuning disk was analyzed 18℃ lowe, deformation due to the disk heat was deformed by 0.3mm for the tuning disk. Although there is an effect to reduce the fading phenomenon due to the thermal behavior of the pure disk and the tuning disk, it can be observed that there is no significant change in the thermal behavior due to the hole processing and the disk surface processing of the tuning disk.

A basic study on Unmanned Machining Process Optimizing and Autonomous Control (무인화 가공공정 최적화 및 자율대응 기술에 관한 기반연구)

  • Kim, Dong-Hoon;Song, Jun-Yeob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.4
    • /
    • pp.367-372
    • /
    • 2012
  • The biggest factors that lower the machining accuracy are thermal deformation and chatter vibration. In this article, we introduce the study case of technology that can automatically compensate the errors of these factors of a machine during processing on the machine tool's CNC(Computerized Numerical Controller) in real time. This study is related to the detection and compensation of thermal deformation and chatter vibration that can compensate for faster and produce processed goods with more precision by autonomous compensation. In addition, this study is related to the active control of vibration during machining, monitoring of cutting force and auto recognition of machining axes origin. Thus, we attempt to introduce the related contents of the development we have made in this article.