• Title/Summary/Keyword: Thermal curing

Search Result 517, Processing Time 0.028 seconds

A Study for Improving the Durability of Print Heads in Binder Jet 3D Printers Method (바인더 젯 3D 프린터의 프린팅 헤드 내구성 향상을 위한 연구)

  • Jung-Chul Hwang;Tae-Sung Kim
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.153-158
    • /
    • 2023
  • This research was conducted to reduce the defect rate caused by nozzle clogging of printing heads used in binder jet 3D printers. The binder jet 3D printing technology may adhere to the printing head nozzle by dispersing powder due to mechanical operation such as transferring the printing head and supplying powder, and may cause nozzle clogging by natural curing at the nozzle end depending on the type of binder used. To solve this problem, this study created a cleaning module exclusively for printing heads to check whether the durability of printing heads is improved through analysis of printing results before and after using the cleaning module. To this end, this research used a thermal bubble jet printing head, and the used powder was studied using gypsum powder.

Thermal Resistant Characteristics of Flowable Backfill Materials Using Surplus Soil for Underground Power Utilities (굴착잔토를 재활용한 지중 전력케이블 유동성 뒤채움재의 열저항 특성)

  • Oh, Gidae;Kim, Daehong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.10
    • /
    • pp.15-24
    • /
    • 2010
  • In the case of underground power utilities pipe such as circular pipe, the most difficult problem is low compaction efficiency of the bottom of pipe inducing the failure of utilities. To overcome this problem, various studies have been performed and one of these is CLSM(Controlled Low Strength Materials) accelerated flow ability. But underground power utilities pipe backfill materials is also needed to have good thermal property that can dissipate the heat as rapidly as it is generated. So, in this study, we performed thermal resistancy test for various materials such as sand, weathered soil, clay and mixed soil to analyze the thermal characteristics of CLSM(Controlled Low Strength Materials) with accelerated flow ability for various conditions(water content, unit weight, void ratio, curing time) and to evaluate the applicability for backfill material of underground power utilities pipe. The test results of 16 specimens for thermal resistancy test showed good thermal property that maintained below $85^{\circ}C\;cm/W$.

Fabrication of Cu-30 vol% SiC Composites by Pressureless Sintering of Polycarbosilane Coated SiC and Cu Powder Mixtures (Polycarbosilane이 코팅된 SiC와 Cu 혼합분말의 상압소결에 의한 Cu-30 vol% SiC 복합재료의 제조)

  • Kim, Yeon Su;Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.337-341
    • /
    • 2016
  • Cu-30 vol% SiC composites with relatively densified microstructure and a sound interface between the Cu and SiC phases were obtained by pressureless sintering of PCS-coated SiC and Cu powders. The coated SiC powders were prepared by thermal curing and pyrolysis of PCS. Thermal curing at $200^{\circ}C$ was performed to fabricate infusible materials prior to pyrolysis. The cured powders were heated treated up to $1600^{\circ}C$ for the pyrolysis process and for the formation of SiC crystals on the surface of the SiC powders. XRD analysis revealed that the main peaks corresponded to the ${\alpha}$-SiC phase; peaks for ${\beta}$-SiC were newly appeared. The formation of ${\beta}$-SiC is explained by the transformation of thermally-cured PCS on the surface of the initial ${\alpha}$-SiC powders. Using powder mixtures of coated SiC powder, hydrogen-reduced Cu-nitrate, and elemental Cu powders, Cu-SiC composites were fabricated by pressureless sintering at $1000^{\circ}C$. Microstructural observation for the sintered composites showed that the powder mixture of PCS-coated SiC and Cu exhibited a relatively dense and homogeneous microstructure. Conversely, large pores and separated interfaces between Cu and SiC were observed in the sintered composite using uncoated SiC powders. These results suggest that Cu-SiC composites with sound microstructure can be prepared using a PCS coated SiC powder mixture.

Interfacial Properties and Residual Stress of Carbon Fiber/Epoxy-AT PEI Composite with Matrix Fracture Toughness using Microdroplet Test and Electrical Resistance Measurements (Microdroplet 시험법과 전기저항 측정을 이용한 탄소섬유 강화 Epoxy-AT PEI 복합재료의 수지파괴인성에 따른 잔류응력 및 계면물성)

  • Kim, Dae-Sik;Kong, Jin-Woo;Park, Joung-Man;Kim, Minyoung;Kim, Wonho;Ahn, Byung-Hyun;Park, In-Seo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.109-113
    • /
    • 2002
  • Interfacial and electrical properties for the carbon fiber reinforced epoxy-amine terminated (AT) PEI composites were performed using microdroplet test and electrical resistance measurements. As AT PEI content increased, the fracture toughness of epoxy-AT PEI matrix increased, and IFSS was improved due to the improved toughness and energy absorption mechanisms of AT PEI. The microdroplet in the carbon fiber/neat epoxy composite showed brittle microfailure mode. At 15 wt% AT PEI content, ductile microfailure mode appeared because of improved fracture toughness. After curing, the changes of electrical resistance (ΔR) with increasing AT PEI content increased gradually because of thermal shrinkage. The matrix fracture toughness was correlated to IFSS, TEC and electrical resistance. In cyclic strain test, the maximum stress and their slope of the neat epoxy case were higher than those of 15 wt% AT PEI. The results obtained from electrical resistance measurements under curing process and reversible stress and strain were consistent well with matrix toughness properties.

  • PDF

Effects of Hardeners and Catalysts on the Reliability of Copper to Copper Adhesive Joint (Cu-Cu 접착부의 고온고습 내구성에 미치는 경화제 및 촉매제의 영향)

  • Min, Kyung-Eun;Kim, Hae-Yeon;Bang, Jung-Hwan;Kim, Jong-Hoon;Kim, Jun-Ki
    • Korean Journal of Materials Research
    • /
    • v.21 no.5
    • /
    • pp.283-287
    • /
    • 2011
  • As the performance of microelectronic devices is improved, the use of copper as a heat dissipation member is increasing due to its good thermal conductivity. The high thermal conductivity of copper, however, leads to difficulties in the joining process. Satisfactory bonding with copper is known to be difficult, especially if high shear and peel strengths are desired. The primary reason is that a copper oxide layer develops rapidly and is weakly attached to the base metal under typical conditions. Thus, when a clean copper substrate is bonded, the initial strength of the joint is high, but upon environmental exposure, an oxide layer may develop, which will reduce the durability of the joint. In this study, an epoxy adhesive formulation was investigated to improve the strength and reliability of a copper to copper joint. Epoxy hardeners such as anhydride, dihydrazide, and dicyandiamide and catalysts such as triphenylphosphine and imidazole were added to an epoxy resin mixture of DGEBA and DGEBF. Differential scanning calorimetry (DSC) analyses revealed that the curing temperatures were dependent on the type of hardener rather than on the catalyst, and higher heat of curing resulted in a higher Tg. The reliability of the copper joint against a high temperature and high humidity environment was found to be the lowest in the case of dihydrazide addition. This is attributed to its high water permeability, which led to the formation of a weak boundary layer of copper oxide. It was also found that dicyandiamide provided the highest initial joint strength and reliability while anhydride yielded intermediate performance between dicyandiamide and dihydrazide.

Effect of Types of Peptizing Agents Used for Preparation of Alumina Sols on the Properties of Coating Films (Alumina Sol의 제조 시 사용되는 해교제 종류가 코팅 도막의 물성에 미치는 영향)

  • Lee, Byoung-Hwa;Lim, Hyung-Jun;Lee, In-Pyo;Ahn, Chi-Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.767-774
    • /
    • 2016
  • Three different alumina sols were prepared by hydrolyzing aluminum isopropoxide as a starting material in methanol solvent, followed by peptizing with acetic acid, nitric acid or hydrochloric acid as a peptizing agent by the Sol-Gel Method. Also, coating solutions were obtained by adding a silane coupling agent, (3-glycidyloxypropyl) trimethoxysilane to the alumina sols, deposited on polycarbonate substrates by dip-coating and densified by thermal curing. The effect of types of peptizing agents was studied on the properties of coating films. As a result, coating films, prepared with hydrochloric acid or nitric acid as a peptizing agent, showed excellent properties of pencil hardness of H or 2H and adhesion of 5B. On the other hand, coating films, prepared with acetic acid as a peptizing agent, exhibited poor properties of pencil hardness of HB and adhesion of 3B.

Evaluation of Physical and Mechanical Characteristics of Korean Epoxy Asphalt Mixtures (국산 에폭시 아스팔트 혼합물의 물리.역학적 특성 평가)

  • Kim, Byung-Hun;Baek, Jong-Eun;Lee, Hyun-Jong;Park, Hee-Mun
    • International Journal of Highway Engineering
    • /
    • v.14 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • This study evaluated the performance of Korean epoxy asphalt mixtures using several laboratory tests. Four types of epoxy asphalt mixtures were manufactured based on 13mm dense graded asphalt mixtures: three Korean and one Japanese epoxy asphalt mixtures where 20% or 40% of asphalt binder was replaced by epoxy resins. Curing time was determined as 3 and 6 hours for the mixtures containing 40% and 20% of epoxy resins, respectively. From the laboratory tests including wheel tracking, indirect tension fatigue, bending beam, and moisture susceptibility tests, it was concluded that the epoxy asphalt mixtures had superior performance than conventional asphalt mixtures except moisture susceptibility. Also, the performance of the Korean epoxy asphalt mixtures was comparable to the Japanese mixtures. Thermal coefficient, bond strength, and indirect tension tests were conducted to examine the applicability of the Korean epoxy asphalt mixtures to concrete repair. Its adhesion was strong enough to be bonded to surrounding concrete materials and its tensile strength was comparable to the concrete, but thermal expansion coefficient was 5 times greater than the surrounding concrete.

Rheological Properties and Roll Coating Dynamics of Basecoats for Precoated Automotive Metal Sheets (자동차 선도장 강판용 베이스코트의 유변학적 특성 및 롤코팅 동적 거동)

  • Lee, Dong Geun;Hwang, Ji Won;Kim, Kyung Nam;Noh, Seung Man;Jung, Hyun Wook
    • Journal of Adhesion and Interface
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this study, rheological properties and flow dynamics in roll coating process of basecoat paints have been investigated for automotive precoated metal (PCM) sheet applications. Various rheological properties for basecoats with three colors (black, blue, and silver), such as shear viscosity data at room temperature and elastic/viscous moduli under thermal curing condition, have been measured using a rotational rheometer. It is found that the relative portion of function groups inside basecoats and their viscosity level have greatly affected the formation of crosslinked networks by thermal curing. Also, operability coating windows for basecoats have been established in three-roll coating process system by observing their flow instabilities such as ribbing and cascade. It is confirmed that rheological approaches applied in this study have been usefully applied to develop environmentally-friendly PCM coating technology and optimally control the coating operations for non-Newtonian PCM paints.

Characterization of Epoxy Resin Containing Nano Clay Prepared by Electron Beam (전자선에 의해 제조된 나노 clay 함유 에폭시 수지의 특성)

  • Park, Jong-Seok;Lee, Seung-Jun;Lim, Youn-Mook;Jeong, Sung-In;Gwon, Hui-Jeong;Shin, Young-Min;Kang, Phil-Hyun;Nho, Young-Chang
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2015
  • Epoxy resin is widely used as aerospace, automobile, construction and electronics due to their good mechanical and electrical properties and environmental advantages. However, the inherent flammability of epoxy resin has limited its application in some field where good flame retardancy is required. Nano clay can enhance the properties of polymers such as flames retardancy and thermal stability. In this study, we have investigated the nanoclay filled epoxy composite, which has good flame retardancy while maintaining high mechanical properties. The cured epoxy resins were obtained using an electron beam curing process. The nano clays were dispersed in epoxy acrylate solution and mechanically stirred. The prepared mixtures were irradiated using an electron beam accelerator. The composites were characterized by gel content and thermal/mechanical properties. Moreover, the flammability of the composite was evaluated by limited oxygen index (LOI). The flame retardancy of nano clay filled epoxy composite was evidently improved.

Phenylethynyl-terminated polyimide, exfoliated graphite nanoplatelets, and the composites: an overview

  • Cho, Donghwan;Drzal, Lawrence T.
    • Carbon letters
    • /
    • v.19
    • /
    • pp.1-11
    • /
    • 2016
  • In efforts to characterize and understand the properties and processing of phenylethynyl-terminated imide (LaRC PETI-5, simply referred to as PETI-5) oligomers and polymers as a high-temperature sizing material for carbon fiber-reinforced polymer matrix composites, PETI-5 imidization and thermal curing behaviors have been extensively investigated based on the phenylethynyl end-group reaction. These studies are reviewed here. In addition, the use of PETI-5 to enhance interfacial adhesion between carbon fibers and a bismaleimide (BMI) matrix, as well as the dynamic mechanical properties of carbon/BMI composites, are discussed. Reports on the thermal expansion behavior of intercalated graphite flake, and the effects of exfoliated graphite nanoplatelets (xGnP) on the properties of PETI-5 matrix composites are also reviewed. The dynamic mechanical and thermal properties and the electrical resistivity of xGnP/PETI-5 composites are characterized. The effect of liquid rubber amine-terminated poly(butadiene-co-acrylonitrile) (ATBN)-coated xGnP particles incorporated into epoxy resin on the toughness of xGnP/epoxy composites is examined in terms of its impact on Izod strength. This paper provides an extensive overview from fundamental studies on PETI-5 and xGnP, as well as applied studies on relevant composite materials.