• Title/Summary/Keyword: Thermal cracks

Search Result 446, Processing Time 0.024 seconds

Investigation and Analysis of Cracks in Multi-layer Ceramic Capacitor (다층세라믹 콘덴서에서 생성된 크랙의 관찰과 분석)

  • Lee, Chul-Seung;Kang, Byung-Sung;Hur, Kang-Heon;Park, Jin-Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • For the Y5V characteristic MLCC which is very prone to crack, it is important to to find out the basic cause of the crack. After finding out the crack origin, the materials and processes should be developed to remove the crack. The microstructures of the cracks were investigated using the fractographic method for the various types of cracks such as an exterior crack, a cyclic thermal shock crack, and an piezo-electric crack. It was found out that the crack origin was the pore at the end of the Ni inner electrode after bake-out. Even though the three dimensional crack shapes were different, the crack origins were seemed to be similar. The exterior crack could grow from the origin with the aids of residual and applied stress. FEM (finite element method) analysis was used to calculate the stress distribution of residual and applied stress. And the concept of fracture mechanics was applied for the explanation of the crack initiation and propagation from the stresses concentration.

Nondestructive Evaluation of Thermal Shock Damage for Alumina Ceramics (알루미나 세라믹에 대한 열충격 손상의 비파괴적 평가)

  • Lee, Jun-Hyeon;Lee, Jin-Gyeong;Song, Sang-Heon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1189-1196
    • /
    • 2001
  • The objective of this paper is to investigate the applicability of acoustic emission(AE) technique to monitor the progress of the thermal shock damage on alumina ceramic. For this purpose, alumina ceramic specimen was heated in the furnace and then was quenched in the water tank. When the specimen was quenched in the water tank, complex AE signals due to the initiation of micro-cracks and boiling effect were generated by the progress of thermal shock damage. These mixed AE signals have to be classified for monitoring the degree of the thermal shock damage of alumina ceramics. In this paper, the mixed AE signals generated from both the boiling effect and the crack initiation under thermal shock test was analyzed. The characteristics of AE signals were also discussed by considering the variation of bending strength and Yongs modulus of specimens.

Thermal cracking assessment for nuclear containment buildings using high-strength concrete

  • Yang, Keun-Hyeok;Mun, Jae-Sung;Kim, Do-Gyeum;Chang, Chun-Ho;Mun, Ju-Hyun
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.429-438
    • /
    • 2020
  • To shorten the construction times of nuclear facility structures, three high-strength concrete mixtures were developed with specific consideration given to their curing temperatures, their economic efficiency, and the practicality of their quality control. This study was conducted to examine the temperature rise profiles of these three concrete mixtures and the potential for early-age thermal cracking in the primary containment vessel of a nuclear reactor with a wall thickness of 1200 mm. The one-layer placement height of the concrete for the primary containment vessel was increased from the conventional 3 m to 3.5 m. A nonlinear finite element analysis (FEA) was conducted using the thermal properties of concrete determined from the isothermal hydration and adiabatic hydration tests, and tuned through comparisons made with temperature rise profiles obtained for 1200-mm-thick mock-up wall specimens cured at temperatures of 5, 20, and 35℃. The hydration heat performance of the three concrete mixtures and their potential to produce thermal cracking in nuclear facilities indicate that the mixtures have considerable potential for practical application to the primary containment vessel of a nuclear reactor at various curing temperatures, fulfilling the minimum requirements of the ACI 301 and minimizing the likelihood of the occurrence of thermal cracks.

Factors to Influence Thermal-Cycling Reliability of Passivation Layers in Semiconductor Devices Utilizing Lead-on-Chip (LOC) Die Attach Technique (리드 온 칩 패키징 기술을 이용하여 조립된 반도체 제품에서 패시베이션 박막의 TC 신뢰성에 영향을 미치는 요인들)

  • Lee, Seong-Min;Lee, Seong-Ran
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.288-292
    • /
    • 2009
  • This article shows various factors that influence the thermal-cycling reliability of semiconductor devices utilizing the lead-on-chip (LOC) die attach technique. This work details how the modification of LOC package design as well as the back-grinding and dicing process of semiconductor wafers affect passivation reliability. This work shows that the design of an adhesion tape rather than a plastic package body can play a more important role in determining the passivation reliability. This is due to the fact that the thermal-expansion coefficient of the tape is larger than that of the plastic package body. Present tests also indicate that the ceramic fillers embedded in the plastic package body for mechanical strengthening are not helpful for the improvement of the passivation reliability. Even though the fillers can reduce the thermal-expansion of the plastic package body, microscopic examinations show that they can cause direct damage to the passivation layer. Furthermore, experimental results also illustrate that sawing-induced chipping resulting from the separation of a semiconductor wafer into individual devices might develop into passivation cracks during thermal-cycling. Thus, the proper design of the adhesion tape and the prevention of the sawing-induced chipping should be considered to enhance the passivation reliability in the semiconductor devices using the LOC die attach technique.

A Study on The Degradation Characteristics of MLCCs SAC305 Lead-Free Solder Joints and Growth IMCs by Thermal Shock Test (열충격 시험을 통한 MLCCs SAC305 무연 솔더 접합부의 IMCs 성장과 접합특성 저하에 관한 연구)

  • Jung, Sang-Won;Kang, Min-Soo;Jeon, Yu-Jae;Kim, Do-Seok;Shin, Young-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.152-158
    • /
    • 2016
  • The bonding characteristics of MLCCs (multi layer ceramic capacitor, C1608) lead-free solder (SAC305) joints were evaluated through thermal shock test ($-40^{\circ}C{\sim}125^{\circ}C$, total 1,800 cycle). After the test, IMCs( intermetallic compounds) growth and cracks were verified, also shear strengths were measured for degradation of solder joints. In addition, The thermal stress distributions at solder joints were analyzed to compare the solder joints changes before and after according to thermal shock test by FEA (finite elements analysis). We considered the effects of IMCs growth at solder joints. As results, the bonding characteristics degradation was occurred according to initial crack, crack propagations and thermal stress concentration at solder-IMCs interface, when the IMCs grown to solder inside.

A meso-scale approach to modeling thermal cracking of concrete induced by water-cooling pipes

  • Zhang, Chao;Zhou, Wei;Ma, Gang;Hu, Chao;Li, Shaolin
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.485-501
    • /
    • 2015
  • Cooling by the flow of water through an embedded cooling pipe has become a common and effective artificial thermal control measure for massive concrete structures. However, an extreme thermal gradient induces significant thermal stress, resulting in thermal cracking. Using a mesoscopic finite-element (FE) mesh, three-phase composites of concrete namely aggregate, mortar matrix and interfacial transition zone (ITZ) are modeled. An equivalent probabilistic model is presented for failure study of concrete by assuming that the material properties conform to the Weibull distribution law. Meanwhile, the correlation coefficient introduced by the statistical method is incorporated into the Weibull distribution formula. Subsequently, a series of numerical analyses are used for investigating the influence of the correlation coefficient on tensile strength and the failure process of concrete based on the equivalent probabilistic model. Finally, as an engineering application, damage and failure behavior of concrete cracks induced by a water-cooling pipe are analyzed in-depth by the presented model. Results show that the random distribution of concrete mechanical parameters and the temperature gradient near water-cooling pipe have a significant influence on the pattern and failure progress of temperature-induced micro-cracking in concrete.

A Study of the Thermal Analysis for the Crack Control of Underground Pier Footing (지하 교각 기초의 온도균열 제어를 위한 수화열 해석 연구)

  • Park, Weon-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.91-101
    • /
    • 2006
  • Lately, massive concrete structures are increasingly built. In such massive structures, the heat of hydration of mass concrete causes thermal cracks. To avoid thermal crack, methods widely acceptable for practical use are pre-cooling, pipe cooling and control of placing height. Thermal stress analysis is performed to find the way of controlling the thermal crack of pier footing mat in this paper. The footing mat model for the analysis is $12m{\times}14m$area and 3m height. The analysis results are compared with method of control of lift height and method of pipe cooling. The analysis results show that thermal crack can be removed by method of placing control and pipe cooling at footing mat placed on the ground.

Numerical analysis of thermal and composite stresses in pre-stressed concrete pavements

  • Nejad, Fereidoon Moghadas;Ghafari, Sepehr;Afandizadeh, Shahriar
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.169-182
    • /
    • 2013
  • One of the major benefits of the pre-stressed concrete pavements is the omission of tension in concrete that results in a reduction of cracks in the concrete slabs. Therefore, the life of the pavement is increased as the thickness of the slabs is reduced. One of the most important issues in dealing with the prestressed concrete pavement is determination of the magnitude of the pre-stress. Three dimensional finite element analyses are conducted in this research to study the pre-stress under various load (Boeing 777) and thermal gradient combinations. The model was also analyzed under temperature gradients without the presence of traffic loading and the induced stresses were compared with those from theoretical relationships. It was seen that the theoretical relationships result in conservative values for the stress.

Damage Mechanism of Asphalt Concrete under Low Temperatures

  • Kim, Kwang-Woo;Yeon, Kyu-Seok;Park, Je-Seon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.200-204
    • /
    • 1994
  • Low temperature associated damage mechanism is not well known for asphalt concrete. Many studies have related the thermal cracking of pavement in the roadway in cold region with overall shrinkage of the pavement surface under assumption of homogeneous material. This study, however, was intiated based on the assumption that thermal incompatibility of materials (heterogeneous) in asphalt concrete mixture would be the primary cause of the damages. Acoustic emission technique and microscopic obsevation were employed to evaluate damage mechanism of asphalt concrete due to low temperature. The first method showed the sufficient evidence that asphalt concrete could be damaged by lowered temperature only. The second method showed that the damage by temperature resulted in micro-cracks at the interface between asphalt matrix and aggregate particle. It was concluded that these damage mechanisms were the primary cause of major thermal cracking of asphalt pavement in cold region.

  • PDF

Finite Element Analysis on the Dynamic Behaviors of a Disk-Pad Brake in High-Speed Trains (고속전철용 디스크-패드 브레이크의 동적거동 특성에 관한 유한요소해석)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.7-7
    • /
    • 2000
  • Using a coupled thermal-mechanical analysis, the dynamic distortion of the ventilated disk brakes has been presented for a high-speed train. The offset ratio between the maximum and minimum values of the thermal distortions has been analyzed as a function of a braking number. The computed FEM results show that the offset rations in radial direction are much greater than those of circumferentially distorted components. This means that the axial distortions in radial direction may dominantly produce thermally caused wears and cracks at the rubbing surfaces.