• Title/Summary/Keyword: Thermal cracks

Search Result 446, Processing Time 0.041 seconds

Analysis for the Control of Thermal Cracks in a Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 수화열해석)

  • Kim, Sang-Chel;Kim, Yeon-Tae
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1205-1210
    • /
    • 2004
  • Cracks in the underground structures are mainly observed due to internal ununiformity of thermal stresses or restraint of structural movement in associate with rapid temperature gradient. Especially, thermal cracks are known to occur easily in a massive structure, but possibility of these depend on the amount of cement applied and ratio of span to height of the structure even though the thickness is less than specification‘s. Thus, this study aims at how to control thermal cracks in a massive subway structure and figures out an optimized construction method and procedure. As results of parametric study for length, height and outer temperature for concrete placement, it is found that hydration heats were not affected by both length and height of concrete placement but thermal stresses were greatly dependent. Most effective ways of controling thermal cracks were to fit a proper ratio of length to height of concrete placement and to decrease temperature of concrete placement as much as possible.

  • PDF

Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals (기계평면시일의 열응력 크랙에 관한 실험적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.

Bounary Element Analysis of Thermal Stress Intensity Factors for Cusp Cracks (커스프 균열에 대한 열응력세기 계수의 경계요소해석)

  • 이강용;조윤호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.119-129
    • /
    • 1990
  • In case that the body with a cusp crack is under uniform heat flow, thermal stress intensity factors are calculated by using boundary element method with linearized body force term. The crack surface is under insulated or fixed temperature condition and the types of crack are symmetric lip and airfoil cusps. Numerical values of thermal stress intensity factors for a Griffith crack and cusp cracks in infinite bodies are proved to be in good agreement within .+-.5% when compared with the previous numerical and exact solutions, respectively. The thermal stress intensity factors for symmetric lip and airfoil cusp cracks in finite bodies are calculated about various effective crack lengths, configuration parameters, and heat flow directions. With the same crack surface thermal boundary conditions, heat flow directions and crack lengths, there are no appreciable differences in variations of thermal stress intensity factors between symmetric lip and airfoil cusp cracks. The signs of thermal stress intensity factors for each cusp crack are changed with each crack surface thermal boundary condition.

Parametric Analysis on Construction Conditions to Control Thermal Cracks in Subway Concrete Structure (지하철 구조물의 온도균열제어를 위한 시공조건별 해석적 영향 분석)

  • 김연태;김상철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.312-318
    • /
    • 2004
  • The wall in a subway structure is easily subject to crack occurrence since its expansion and shrinkage associated with hydration heat reaction is constrained by the slab. The greater problem is that the crack in the wall may be developed to pass through thickness and eventually deteriorate the structure due to rusting of reinforced steel. Thus, this study aims at controlling thermal cracks as much as possible and determining an optimized size of concrete placement through hydration heat analysis. For this study, effects of placement height, length, temperature and types of cement on the thermal cracks were evaluated by temperature rise, thermal stress and crack index. As results of parametric study, it was found that placement height and length do not have an effect on the temperature rise but have significant one on thermal stress which relates to direct possibility of thermal crack occurrence. This means that proper selection of size balancing internal constraint with external one is much more important than reducing the placement height and length simply. In order to prevent from thermal cracks most effectively, in addition, it was noted to reduce placement temperature and to use the cement blended with mineral admixture.

Fracture Mechanics Analysis of a Reactor Pressure Vessel Considering Pressurized Thermal Shock (가압열충격을 고려한 원자로 압력용기의 파괴역학적 해석)

  • 박재학;박상윤
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.29-38
    • /
    • 2001
  • The purpose of this paper is to evaluate the structural integrity of a reactor pressure vessel subjected to the pressurized thermal shock(PTS) during the transient events, such as main steam line break(MSLB) and small break loss of coolant accident(SBLOCA). For postulated surface or subsurface cracks, variation curves of stress intensity factor are obtained by using the three different methods, including ASME section XI code anlysis, the finite element alternating method and the finite element method. From the stress intensity factor curves, the maximum allowable nil-ductility transition temperatures(RT/NDT/) are determined by the tangent criterion and the maximum criterion for various crack configurations and two initial transient events. As a result of the analysis, it is noted that axial cracks have smaller maximum allowable RT$_{NDT}$ values than same-sized circumferential cracks for both the transient events in the case of the tangent criterion. Axial cracks have smaller RT$_{NDT}$ values than same-sized circumferential cracks for MSLB and circumferential cracks have smaller values than axial cracks for SBLOCA in the case of the maximum criterion.

  • PDF

Thermal Crack Creation Process in an Automotive Brake Disk (자동차 브레이크 디스크의 열 균열 생성)

  • Ahn, S.;Lee, B.;Cho, C.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.143-147
    • /
    • 2000
  • This describes thermal crack creation process in automotive disks. Thermal cracks have been serious defects which induced disastrous accidents during traveling. The thermal cracks must be regularly eye-inspected. The cracks have been experimentally analysed; but they were not reported by analytic means yet. This paper proposed thermal crack creation process by a computer simulation which enlightened how to investigate thermal crack by cheap means. We explained the disk thermal crack creation and calculated stress intensity factor of an assumed surface crack in an automotive disk.

  • PDF

Engineering critical assessment of RPV with nozzle corner cracks under pressurized thermal shocks

  • Li, Yuebing;Jin, Ting;Wang, Zihang;Wang, Dasheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2638-2651
    • /
    • 2020
  • Nozzle corner cracks present at the intersection of reactor pressure vessels (RPVs) and inlet or outlet nozzles have been a persistent problem for a number of years. The fracture analysis of such nozzle corner cracks is very important and critical for the efficient design and assessment of the structural integrity of RPVs. This paper aims to perform an engineering critical assessment of RPVs with nozzle corner cracks subjected to several transients accompanied by pressurized thermal shocks. The critical crack size of the RPV model with nozzle corner cracks under transient loading is evaluated on failure assessment curve. In particular, the influence of cladding on the crack initiation of nozzle corner crack under thermal transients is studied. The influence of primary internal pressure and secondary thermal stress on the stress field at nozzle corner and SIF at crack front is analyzed. Finally, the influence of different crack size and crack shape on the final critical crack size is analyzed.

Thermal Crack Control of Massive Foundation Mat of Office-tel Using Thermal Analysis (오피스텔 대형 기초매트의 온도해석을 통한 온도균열제어)

  • 김태홍;하재담;김동석;이종열
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1181-1186
    • /
    • 2000
  • The crack of concrete induced by the heat of hydration is a serious problem, particularly in concrete structures such as biers, thick walls, box type walls, mat-slab of nuclear reactor buildings, dams or foundations of high rise buildings, etc.. As a result of the temperature rise and restriction condition of foundation, the thermal stress which may induce the cracks can occur. Therefore the various techniques of the thermal stress control in massive concrete have been widely used. One of them is prediction of the thermal stress, besides low-heat cement which mitigates the temperature rise, design change which considers steel bar reinforcement, operation control and so on. In this study, firstly it introduce the thermal cracks control technique by employing low-heat cement concrete, thermal stress analysis considering season. Secondly it shows the application of the cracks control technique like block placement.

The analysis of growth and electrical characteristics of micro-crack with thermal effect in PV module (PV 모듈에서 온도 영향에 의한 micro-crack 성장과 전기적 특성 분석)

  • Song, Young-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1318-1319
    • /
    • 2011
  • In this paper, we analyzed of growth and electrical characteristics of micro-cracks with thermal effect in PV module. The micro-cracks are increasing the breakage risk over the whole value chine from the wafer to the finished module, because the wafer or cell is exposed to mechanical stress. we experimentally analyze the direct impact of micro-cracks on the module power and the consequences after artificial aging. The first step, we made micro-cracks in PV module by mechanical load test according to IEC 61215. Next, PV modules applied the thermal cycling test, because microcracks accelerated aging by thermal cycling test. according to IEC61215. Before every test, we checked output and EL image of PV module.

  • PDF

Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock (가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.