• 제목/요약/키워드: Thermal coupled analysis

검색결과 474건 처리시간 0.042초

A COUPLED CFD-FEM ANALYSIS ON THE SAFETY INJECTION PIPING SUBJECTED TO THERMAL STRATIFICATION

  • Kim, Sun-Hye;Choi, Jae-Boong;Park, Jung-Soon;Choi, Young-Hwan;Lee, Jin-Ho
    • Nuclear Engineering and Technology
    • /
    • 제45권2호
    • /
    • pp.237-248
    • /
    • 2013
  • Thermal stratification has continuously caused several piping failures in nuclear power plants since the early 1980s. However, this critical thermal effect was not considered when the old nuclear power plants were designed. Therefore, it is urgent to evaluate this unexpected thermal effect on the structural integrity of piping systems. In this paper, the thermal effects of stratified flow in two different safety injection piping systems were investigated by using a coupled CFD-FE method. Since stratified flow is generally generated by turbulent penetration and/or valve leakage, thermal stress analyses as well as CFD analyses were carried out considering these two primary causes. Numerical results show that the most critical factor governing thermal stratification is valve leakage and that temperature distribution significantly changes according to the leakage path. In particular, in-leakage has a high possibility of causing considerable structural problems in RCS piping.

콤팩트형 태양열/지열히트펌프 하이브리드 냉난방 및 급탕 시스템 개발 및 성능분석 (The Development and Performance Analysis of Compact Type Solar Thermal/Ground Coupled Heat Pump Hybrid System for Heating, Cooling and Hot water)

  • 백남춘;정선영;윤응상;이경호
    • 한국태양에너지학회 논문집
    • /
    • 제32권5호
    • /
    • pp.59-67
    • /
    • 2012
  • In this study,the compact type solar thermal and ground coupled heat pump hybrid system for space heating/cooling and hot water supply has been developed. This hybrid system was installed in Zero Energy Solar House(ZeSH) in KIER for the demonstration. The thermal performance and operational characteristics of this hybrid system were analysed especially. The results are as follows. (1) This hybrid system was designed in order to address the existing disadvantages of solar thermal/ground coupled heat pump system. For this design, all parts except solar collector and ground coupled heat pump were integrated into a single product in a factory. The compact type unit includes two buffer tanks, an expansion tank, pumps, valves, a controller, etc. This system has an advantage of easy installation with simple plumbing work even in narrow space. (2) The thermal charging and discharging time of the buffer tanks and its characteristics by ground coupled heat pump, and heat pump COP according to geo-source temperature and buffer storage temperature have been studied. This system was found to meet well to the heat load without any other auxiliary heating equipment. (3) The operating hours of the ground coupled heat pump as a backup device of solar thermal can be reduced significantly by using solar heat. It was also found that the minimum heating water supply setting temperature and maximum cooling water supply setting temperature make an influence on the heat pump COP. The lower heating water and the higher cooling water temperature, the higher COP. In this respect, the hybrid system's performance can be improved in ZeSH than conventional house.

UV 펄스 레이저 가공의 구리 박막 두께에 따른 열-구조 연성 해석 (Coupled Thermal-Structure Analysis of UV Laser Pulsing according to the Thickness of Copper Film on the Surface of Polyimide)

  • 신민재;신보성
    • 한국레이저가공학회지
    • /
    • 제16권2호
    • /
    • pp.7-11
    • /
    • 2013
  • Recently advanced laser processing is widely introduced to improve the efficiency of micro part production and to reduce the rate of inferior goods. In this paper the trend of delamination of single layer with both thin copper and polyimide according to the variation of copper thickness was investigated using the coupled thermal-structural analysis of ANSYS. From these analyses results, some conclusions were obtained. Firstly, the maximum temperature was increasing with respect to decrease of copper thickness. Secondly the maximum strain which was in general estimation the main effect of the delamination was observed in case of the copper thickness of $5{\mu}m$. Finally the trend of the delamination was decreasing with increasing the thickness of copper layer.

  • PDF

145kV 40kA 3상 GIS 모선의 온도상승 예측 (Temperature Rise Prediction of 145kV 40kA Three-phase GIS Bus Bar)

  • 김중경;이지연;정상용;한성진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.842-843
    • /
    • 2008
  • Many works on the temperature prediction of power apparatus have usually done by coupled magneto-thermal analysis. However, this method can not consider the internal gas or oil flow in the power apparatus. This paper proposes a new coupled magneto-thermal-flow analysis considering Navier-Stokes equations. The convection heat transfer coefficient is calculated analytically and is applied to the boundary condition to the proposed method. Temperature distribution of 145kV 40kA three-phase GIS bus bar model is obtained by coupled magneto-thermal-flow analysis and shows good agreement with the experimental data.

  • PDF

Design Sensitivity Analysis of Coupled Thermo-elasticity Problems

  • Choi Jae-yeon;Cho Seonho
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.50-60
    • /
    • 2004
  • In this paper, a continuum-based design sensitivity analysis (DSA) method is developed for the weakly coupled thermo-elasticity problems. The temperature and displacement fields are described in a common domain. Boundary value problems such as an equilibrium equation and a heat conduction equation in steady state are considered. The direct differentiation method of continuum-based DSA is employed to enhance the efficiency and accuracy of sensitivity computation. We derive design sensitivity expressions with respect to thermal conductivity in heat conduction problem and Young's modulus in equilibrium equation. The sensitivities are evaluated using the finite element method. The obtained analytical sensitivities are compared with the finite differencing to yield very accurate results. Extensive developments of this method are useful and applicable for the optimal design problems incorporating welding and thermal deformation problems.

해석적 기법을 이용한 초고압 GIS용 삼상모선의 온도분포 해석 (Analysis of Temperature Distribution in EHV GIS Three-Phase Busbar Using Analytic Technique)

  • 한성진;김중경
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권4호
    • /
    • pp.196-202
    • /
    • 2006
  • This paper presents a new magneto-thermal finite element analysis for predicting the temperature rise of the EHV GIS busbar. Joule's heat due to current flowing in the main conductor and the heat due to the induced eddy current in the tank are calculated by the magnetic field analysis. And these heats are used as the input data to predict the temperature rise for the thermal analysis. However, it is not easy to apply the heat-transfer coefficients on the boundaries for the thermal analysis. In this paper, the heat-transfer coefficients on the boundaries are analytically calculated by applying the Nusselt number considering material constant and model geometry for the natural convection. The temperature distribution in the busbar by coupled magneto-thermal finite element analysis shows good agreement with the experimental data.

원주가압형 브레이크 디스크의 열-구조 연성해석 (Thermal-Structural Coupled Field Analysis of the Circumferential Pressing Type Brake Disc)

  • 김형훈;이성욱;한동섭;한근조
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.69-74
    • /
    • 2008
  • The heat generated by the brake system of vehicles results in reduction of friction force on the brake surface and vibration during a braking. To solve these problems, extensive research for the brake shape has been conducted such as drilling cooling holes on the brake disc, accommodating ventilated holes and etc. In this study, we suggest the circumferential pressing type brake disc in order to improve its cooling performance. In order to compare the cooling-down efficiency between the conventional side-pressing type and the circumferential-pressing type, we adopted the FMVSS 105-77 as thermal analysis conditions and This newly proposed concept has been verified using Thermal-structure Coupled Field Analysis along with comparative analysis with the existing ventilated disk.

The Coupled Electro-Thermal Field Analysis for Predicting Over-Current Protector Behavior

  • Bae, Jae-Nam;Lee, Sung-Gu;Han, Jung-Ho;Chung, Hae-Yang;Lee, Ju
    • 조명전기설비학회논문지
    • /
    • 제22권7호
    • /
    • pp.43-48
    • /
    • 2008
  • The characteristics of heat transfer of the bimetal disc for over-current protection device is specified. Bimetal consists of two metals which have a different thermal expansion coefficient. To analyze the thermal characteristics, temperature distribution when bimetal acts as a switch is calculated. As usual, heat source is applied to the bimetal and electric current is heat source in the over-current protection switch. In this paper, thermal distribution are obtained by solving a coupled electro-thermal field with 3D finite element method.

유한요소법을 이용한 유압브레이커 Cylinder와 Piston의 열-구조 연성해석을 통한 안정성 평가 (Assessment of Stability of Stability of Hydraulic Breaker Cylinder and Piston through Thermal-Structural coupled Field Analysis by Finite Element Method)

  • 임동욱;박윤수;신봉철
    • Design & Manufacturing
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2018
  • This study proves the causes of cylinder and piston jam by scratches which is the fatal problem of hydraulic breaker through the thermal analysis and thermal-structural coupled field analysis. The trouble from the scratch is a complex problem which can be caused by manufacturing process (this is an internal factor) and the users mistake or contamination in the hydraulic circuit (these are an external factor). Hence, it's not easy to investigate the causes, also hard to prevent the recurrence. In this reason, hydraulic breaker manufacturers are trying to improve the manufacturing process such as machining, heat treatment, grinding, cleaning, also to prevent the contamination in hydraulic circuit and to remove the remains. It's being managed thoroughly by manufacturers. This study shows the effect of the temperature rise by the frictional heat generated when the piston hits the tool on the hydraulic oil while the hydraulic breaker is operating, also the temperature distribution when it starts to affect main components of hydraulic breaker. The stress and the amount of deformation also could be found through thermal-structural coupled field analysis. It proved that the stress and deformation are proportionally increased according to the temperature rise in hit area, and it affects the cylinder and the viscosity of hydraulic oil inside the cylinder when it heats up beyond the certain temperature.

Calculation of Temperature Rise in Gas Insulated Busbar by Coupled Magneto-Thermal-Fluid Analysis

  • Kim, Hong-Kyu;Oh, Yeon-Ho;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권4호
    • /
    • pp.510-514
    • /
    • 2009
  • This paper presents the coupled analysis method to calculate the temperature rise in a gas insulated busbar (GIB). Harmonic eddy current analysis is carried out and the power losses are calculated in the conductor and enclosure tank. Two methods are presented to analyze the temperature distribution in the conductor and tank. One is to solve the thermal conduction problem with the equivalent natural convection coefficient and is applied to a single phase GIB. The other is to employ the computational fluid dynamics (CFD) tool which directly solves the thermal-fluid equations and is applied to a three-phase GIB. The accuracy of both methods is verified by the comparison of the measured and calculated temperature in a single phase and three-phase GIB.