• Title/Summary/Keyword: Thermal conductive plastic

Search Result 14, Processing Time 0.031 seconds

Thermal Design of 21 W LED Light Engine Using Thermal Conductive Plastic (열전도성 플라스틱을 이용한 21 W급 LED Light Engine의 방열설계)

  • Choi, Won-Ho;Choi, Doo-Ho;Lee, Jin-Yeol;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2015
  • This study will design the structural optimization of 21 W LED heat sink using the thermal conductive plastic materials. The thermal conductive plastic heat sink is inferior to aluminum heat sinks in thermal properties. This study will solve this problem using formability of thermal conductive plastic heat sink. A heat sink was optimized in terms of the number, and the thickness of fins and the base thickness of the heat sink, using the Heatsinkdesigner software. Also by using SolidWorks Flow simulation and thermal analysis software, the thermal characteristics of the heat sink were analyzed. As the result, the optimized heat sink has 17 fins, which are 1.5 mm thick and a 3.7 mm-thick base. The highest and the lowest temperature were $51.65^{\circ}C$ and $46.24^{\circ}C$ respectively. Based on these results, The thermal conductive plastic heat sink is considered possible to overcome heating problem when designing in complex structure.

Research on the Heat Exchanger for Kimchi Refrigerator Using Thermal Conductive Plastic (열전도성 플라스틱을 이용한 김치냉장고용 열교환기에 관한 연구)

  • Kang Tae-Ho;Baek Jong-Yong;Kwon Yong-Ha;Kim In-Kwan;Kim Young-Soo;Sin Dae-Sik;Park Jae-Hong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.407-416
    • /
    • 2005
  • The kimchi refrigerator is the electric home appliance which is used for the maturing and preserving of the kimchi in domestic and foreign market. The kimchi refrigerator is composed in 3 main parts as insulation. kimchi container, machinery room. The heat exchanger of kimchi refrigerator is made of aluminum and the other parts are made of steel and polymer. Also, kimchi refrigerator is expensive and heavy as compared with same class of refrigerator until now. In the present study, the possibility to replace heat exchanger from aluminum to thermal conductive plastic was analyzed and experimented. The thermal conductive plastic has $10{\sim}100$ times heat conductivity than that of normal plastic. It is known that heat transfer process is dependent not only conduction but convection or radiation. Thermal conductivity of the applied material in this research is over than 2 W/mK, thermal conductivity doesn't play a vital role on heat transfer. In this study, temperature is the most important parameter on the kimchi refrigerator and the temperature of kimchi refrigerator's heat exchanger was measured and compared with the temperature calibrated by CFD analysis on the inside wall of the kimchi refrigerator. It is important to keep constantly the inside temperature of the Kimchi refrigerator. Besides numerical analyses for the new thermal conductive plastic for heat exchanger were executed with the various height of evaporation tube. A series of experiments were conducted to compare the performance of the two heat exchanger made of aluminum and thermal conductive plastic at the same condition and certified the possibility of the thermal conductive plastic. According to these results, it was confirmed that the conventional aluminium heat exchanger can be replaced by thermal conductive plastic successfully.

Characteristic of Frost Formed on Thermally Conductive Plain Plastic Plate

  • Lee Jang-Seok;Lee Kwan-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.138-144
    • /
    • 2005
  • In order to select a new material for a heat exchanger, the frosting behavior of a thermally conductive plastic based on PBT was compared to the frosting behavior of aluminum and three types of plastics based on PTFE. The frosting behavior on the 1 mm thick PBT specimen was similar to that of the aluminum specimen but not that of the pure PTFE specimen. The properties of the frost formed on the specimens were affected by both the thermal conductivity and surface characteristics of the materials. The heat and mass transfer rates of the thermally conductive plastic were almost equivalent to those of the aluminum specimen.

Frosting Behavior on the Plate of Thermally Conductive Plastic (열전도성 플라스틱 평판에서의 착상거동)

  • 이장석;이관수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.667-672
    • /
    • 2004
  • An experimental study has been carried out to investigate the frosting behavior on the plate of thermally conductive plastic (PBT based resin) by comparing it with those of aluminum and some plastic test specimens (PTFE based resin). It is found that the frosting behavior of plastic specimens with 1 mm thickness shows similar trend to that of aluminum except PTFE. The properties of frost formed on the specimens are found to be affected by both thermal conductivity and surface characteristics of the materials. The results indicate that the heat and mass transfer rates of PBT resin are almost equivalent to those of aluminum.

Thermal Characteristics of 20 W LED Module on Light Thermal Conductive Plastic Heat Sink: Comparison with that on Aluminum Die Casting Alloy (ADC-12) (경량화 열전도성 플라스틱 Heat Sink기반 20 W급 LED Module의 열 특성: 다이캐스팅합금 (ADC-12)과 비교 연구)

  • Yeo, Jung-Kyu;Her, In-Sung;Lee, Seung-Min;Choi, Hee-Lack;Yu, Young-Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.380-385
    • /
    • 2016
  • Thermal characteristics of 20 W LED module on light thermal conductive plastic (TCP) heat sink were investigated in comparison with that on aluminum die casting alloy (ADC-12). Thermal simulations of the heat sinks were conducted by using flow simulation of SolidWorks with the following input parameters: density is 1.70 and $2.82kg/m^2$, thermal conductivity is 20 and $92W/(m{\cdot}K)$ for TCP and ADC-12, respectively. The simulated and measured temperatures of the LED modules on TCP heat sink were consistent with its measured temperature, which was $3^{\circ}C$ higher that on ADC-12. The fabricated LED module on TCP heat sink with a weight of 120.5 g was 30% lighter in weight than that of the ADC-12 reference with 171.0 g.

Experimental Study of the Frosting Behavior on Various Plain Plate (여러 종류의 재질을 이용한 평판상 착상 거동에 대한 실험적 연구)

  • Lee, Jang-Seok;Jhee, Sung;Park, Jin-Koo;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1576-1581
    • /
    • 2004
  • An experimental study has been carried out to investigate the frosting behaviors of thermally conductive plastic(PBT based resin) resin by comparing with those of aluminum and some plastic(PTFE based resin) test specimens. It is found that the frosting behavior of plastic specimens with 1 mm thickness show similar trend with aluminum except PTFE. The properties of frost formed on the specimens are affected by both thermal conductivityand surface characteristics (hydrophilic/hydrophobic) of the materials. It can be said that the heat and mass transfer rate of plastic materials are almost equivalent with those of aluminum.

  • PDF

Development of a Chip Bonding Technology for Plastic Film LCDs

  • Park, S.K.;Han, J.I.;Kim, W.K.;Kwak, M.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.89-90
    • /
    • 2000
  • A new technology realizing interconnection between Plastic Film LCDs panel and a driving circuit was developed under the processing condition of low temperature and pressure with ACFs developed for Plastic Film LCDs. The conduction failure of interconnection of the two resulted from elasticity, low thermal resistance and high thermal expansion of plastic substrates. Conductive particles with elasticity similar to the plastic substrate did not damaged a ITO electrode on plastic substrates, and low temperature and pressure process also did not deform the surface of plastic substrates. As a result highly reliable interconnection with minimum contact resistance was accomplished.

  • PDF

An Applicability Estimation of Plastic Vertical Pipes using Electric Fusion Fittings through Measurement (실측을 통한 융착식 플라스틱 입상배관 성능 평가)

  • Park, Yool;Ahn, Young-Chull;Kim, Hyun-Dae;Kim, Jeong-Su;Goark, You-Shik;Kim, Young-Kyoung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.595-599
    • /
    • 2013
  • The pipes used in buildings are generally categorized into metallic or plastic materials. Metal pipes, such as copper and stainless steel pipes, are mainly used for water and hot water supply, and for the heating system. However, plastic pipes made of polyethylene and cross-linked polyethylene are used for floor heating, water drainage, and air vent systems. Usually, plastic pipes have thermal demerits, such as high linear expansion coefficients and bending phenomenon by hot water, although the pipes have several merits of light weight, low price, low thermal conductivity, and the comparatively high workability of metal pipes. Therefore, if those kind of demerits are overcome, plastic pipes can be easily accepted for hot water systems. This research is aimed to evaluate the applicability for vertical heating pipes of a plastic pipe system consisting of electric fusion fitting of a conductive carbon compound and propylene random glass fiber pipe, through measurement of the expansion rate and leakage in summer and winter seasons, in the apartment construction field.

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.